Skip to main content

Advertisement

SpringerLink
A Monte Carlo study of growth regressions
Download PDF
Download PDF
  • Open Access
  • Published: 01 May 2009

A Monte Carlo study of growth regressions

  • William R. Hauk Jr.1 &
  • Romain Wacziarg2,3,4 

Journal of Economic Growth volume 14, pages 103–147 (2009)Cite this article

  • 2034 Accesses

  • 165 Citations

  • 175 Altmetric

  • Metrics details

Abstract

Using Monte Carlo simulations, this paper evaluates the bias properties of estimators commonly used to estimate growth regressions derived from the Solow model. We explicitly allow for measurement error, country-specific fixed effects and regressor endogeneity. An OLS estimator applied to a single cross-section of variables averaged over time (the between estimator) performs best in terms of the extent of bias on each of the estimated coefficients. Fixed-effects and the Arellano–Bond GMM estimator overstate the speed of convergence under a wide variety of assumptions, while the between estimator understates it. Finally, fixed effects and Arellano–Bond bias towards zero the slope estimates on the human and physical capital accumulation variables, while the between estimator and the Blundell–Bond system GMM estimator bias these coefficients upwards.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  • Acemoglu D., Johnson S., Robinson J.A. (2001) The colonial origins of comparative development: An empirical investigation. American Economic Review 91: 1369–1401

    Article  Google Scholar 

  • Arellano, M. (2003). Modelling optimal instrumental variables for dynamic panel data. In Invited lecture at european meeting of the econometric society in Venice, CEMFI Working Paper no. 310.

  • Arellano M., Bond S. (1991) Some tests of specification for panel data: Monte Carlo evidence and an application to employment questions. Review of Economic Studies 58(2): 277–297

    Article  Google Scholar 

  • Arellano M., Bover O. (1995) Another look at the instrumental variables estimation of error-components models. Journal of Econometrics 68: 29–51

    Article  Google Scholar 

  • Barro R. (1991) Economic growth in a cross section of countries. Quarterly Journal of Economics 106(2): 407–443

    Article  Google Scholar 

  • Barro R. (1997) Determinants of economic growth. MIT Press, Cambridge

    Google Scholar 

  • Barro, R. J., & Lee, J.-W. (2000). International data on educational attainment: Updates and implications, Working Paper no. 42. Center for International Development at Harvard University.

  • Barro R., Sala-i-Martin X. (1995) Economic growth. McGraw Hill, New York

    Google Scholar 

  • Barro R., Sala-i-Martin X. (2003) Economic growth (2nd ed). McGraw Hill, New York

    Google Scholar 

  • Baumol W. (1986) Productivity growth, convergence and welfare: What the long run data show. American Economic Review 76: 1072–1085

    Google Scholar 

  • Benhabib J., Spiegel M. (1994) The role of human capital in economic development: Evidence from aggregate cross-country data. Journal of Monetary Economics 34: 143–173

    Article  Google Scholar 

  • Bernanke, B. S., & Gürkaynak, R. S. (2001). Is growth endogenous? Taking Mankiw, Romer, and Weil seriously. NBER Macroeconomics Annual.

  • Blundell R., Bond S. (1998) Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics 87: 115–143

    Article  Google Scholar 

  • Bond, S., Hoeffler, A., & Temple, J. (2001). GMM estimation of empirical growth models. CEPR Discussion Paper #3048.

  • Caselli, F. (2004). The missing input: Accounting for cross-country income differences. In P. Aghion & S. Durlauf (Eds.), Handbook of economic growth. North Holland (forthcoming).

  • Caselli F., Esquivel G., Lefort F. (1996) Reopening the convergence debate: A new look at cross-country growth empirics. Journal of Economic Growth 1(3): 363–389

    Article  Google Scholar 

  • Caselli, F., & Feyrer, J. (2006). The marginal product of capital, working paper. London School of Economics.

  • Cragg J.G., Donald S.G. (1993) Testing identifiability and specification in instrumental variable models. Econometric Theory 9: 222–240

    Article  Google Scholar 

  • DeLong J.B. (1998) Productivity growth, convergence, and welfare: Comment. American Economic Review 78: 1138–1154

    Google Scholar 

  • Durlauf, S., Johnson, P., & Temple, J. (2005). Growth econometrics. In P. Aghion & S. Durlauf (Eds.), Handbook of economic growth (Vol. 1, part A, chapter 8, pp. 555–677). Amsterdam: North Holland.

  • Easterly W., Loayza N., Montiel P. (1997) Has Latin America’s post-reform growth been disappointing?. Journal of International Economics 43: 287–311

    Article  Google Scholar 

  • Forbes K. (2000) A reassessment of the releationship between inequality and growth. American Economic Review 90: 869–887

    Article  Google Scholar 

  • Frankel J.A., Romer D. (1999) Does trade cause growth?. American Economic Review 89(3): 379–399

    Google Scholar 

  • Griliches Z., Hausman J. (1986) Errors in variables in panel data. Journal of Econometrics 31(1): 93–118

    Article  Google Scholar 

  • Hall R., Jones C.I. (1999) Why do some countries produce so much more output per worker than others?. Quarterly Journal of Economics 114(1): 83–116

    Article  Google Scholar 

  • Hauk, W. R., & Wacziarg, R. (2004). A Monte Carlo study of growth regressions. NBER Technical Working Paper #T0296

  • Heston, A., Summers, R., & Aten, B. (2002). Penn world table version 6.1. Center for International Comparisons at the University of Pennsylvania (CICUP).

  • Islam N. (1995) Growth empirics: A panel data approach. Quarterly Journal of Economics 110(4): 1127–1170

    Article  Google Scholar 

  • Islam N. (2000) Small sample performance of dynamic panel estimators in estimating the growth convergence equation: A Monte Carlo study. Advances in Econometrics 15: 317–339

    Article  Google Scholar 

  • Klenow P.J., Rodríguez-Clare A. (1997) The neoclassical revival in growth economics: Has it gone too far?. In: Bernanke B., Rotemberg J. (eds) NBER macroeconomics annual 1997. MIT Press, Cambridge, MA, pp 73–102

    Google Scholar 

  • Klepper S., Leamer E. (1984) Consistent sets of estimates for regressions with errors in all variables. Econometrica 52(1): 163–184

    Article  Google Scholar 

  • Knight M., Loayza N., Villanueva D. (1993) Testing the Neoclassical theory of economic growth: A panel data approach. International Monetary Fund Staff Papers 40(3): 512–541

    Article  Google Scholar 

  • Levine R., Loayza N., Beck T. (2000) Financial intermediation and growth: Causality and causes. Journal of Monetary Economics 46: 31–77

    Article  Google Scholar 

  • Mankiw N.G., Romer D., Weil D.N. (1992) A contribution to the empirics of economic growth. Quarterly Journal of Economics 107(2): 407–437

    Article  Google Scholar 

  • Solow R. (1956) A contribution to the theory of economic growth. Quarterly Journal of Economics 70(1): 65–94

    Article  Google Scholar 

  • Staiger D., Stock J.H. (1997) Instrumental variables regression with weak instruments. Econometrica 65: 557–586

    Article  Google Scholar 

  • Stock J.H., Wright J., Yogo M. (2002) A survey of weak instruments and weak identification in GMM. Journal of Business and Economic Statistics 20(4): 518–529

    Article  Google Scholar 

  • Stock, J. H., & Yogo, M. (2003). Testing for weak instruments in linear IV regression. In D. W. K. Andrews & J. H. Stock (Eds.), Festschrift in honor of Thomas Rothenberg. Cambridge, UK: Cambridge University Press (forthcoming).

  • Temple J. (1998) Robustness tests of the augmented solow model. Journal of Applied Econometrics 13(4): 361–375

    Article  Google Scholar 

  • Wacziarg R. (2002) Review of easterly’s the elusive quest for growth. Journal of Economic Literature 40(3): 907–918

    Article  Google Scholar 

  • Wansbeek T. (2001) GMM estimation in panel data models with measurement error. Journal of Econometrics 104: 259–268

    Article  Google Scholar 

  • Windmeijer F. (2005) A finite sample correction for the variance of linear efficient two-step GMM estimators. Journal of Econometrics 126: 25–51

    Article  Google Scholar 

Download references

Acknowledgements

We thank Francesco Caselli, Nazrul Islam, Norman Loayza, David McKenzie and seminar participants at Stanford University, UC Davis, the University of Houston, the IMF and Duke University for useful comments. The data and programs used in this paper are available upon request, and all errors are ours.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution,and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Economics, Moore School of Business, University of South Carolina, 1705 College St., Columbia, SC, 29208, USA

    William R. Hauk Jr.

  2. UCLA Anderson School of Management, 110 Westwood Plaza, Los Angeles, CA, 90095, USA

    Romain Wacziarg

  3. NBER, Cambridge, MA, USA

    Romain Wacziarg

  4. CEPR, London, UK

    Romain Wacziarg

Authors
  1. William R. Hauk Jr.
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Romain Wacziarg
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Romain Wacziarg.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Hauk, W.R., Wacziarg, R. A Monte Carlo study of growth regressions. J Econ Growth 14, 103–147 (2009). https://doi.org/10.1007/s10887-009-9040-3

Download citation

  • Published: 01 May 2009

  • Issue Date: June 2009

  • DOI: https://doi.org/10.1007/s10887-009-9040-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Growth regressions
  • Measurement error
  • System-GMM

JEL Classification

  • O47
  • O57
  • C15
  • C23
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.