Skip to main content

Cuticular and Dufour’s Gland Chemistry Reflect Reproductive and Social State in the Facultatively Eusocial Sweat Bee Megalopta genalis (Hymenoptera: Halictidae)

Abstract

Queen pheromones evolved independently in multiple eusocial insect lineages, in which they mediate reproductive conflict by inhibiting worker ovarian development. Although fundamentally important for reproductive division of labor – the hallmark of eusociality – their evolutionary origins are enigmatic. Here, we analyze cuticular and Dufour’s gland chemistries across alternative social and reproductive phenotypes in Megalopta genalis bees (tribe Augochlorini, family Halictidae) that facultatively express simple eusociality. Reproductive bees have distinct overall glandular and cuticular chemical phenotypes compared with non-reproductive workers. On the cuticle, a likely site of signal transmission, reproductives are enriched for certain alkenes, most linear alkanes, and are heavily enriched for all methyl-branched alkanes. Chemicals belonging to these compound classes are known to function as fertility signals in other eusocial insect taxa. Some macrocyclic lactones, compounds that serve as queen pheromones in the other eusocial halictid tribe (Halictini), are also enriched among reproductives relative to workers. The intra-population facultative eusociality of M. genalis permits direct comparisons between individuals expressing alternative reproductive phenotypes – females that reproduce alone (solitary reproductives) and social queens – to highlight traits in the latter that may be important mediators of eusociality. Compared with solitary reproductives, the cuticular chemistries of queens are more strongly differentiated from those of workers, and furthermore are especially enriched for methyl-branched alkanes. Determining the pheromonal function(s) and information content of the candidate signaling compounds we identify will help illuminate the early evolutionary history of queen pheromones, chemical signals central to the organization of insect eusocial behavior.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

The chemical data generated for this study, and the R scripts used for heatmap generation, are available on Cornell University’s eCommons repository (https://doi.org/10.7298/9qym-kw90).

References

  1. Adams, RP (2007) Identification of essential oil components by gas chromatography / mass spectrometry (4th ed.). Allured Publishing Corp, Carol Stream, IL

  2. Alexander RD (1974) The evolution of social behavior. Annu Rev Ecol Syst 5:325–383

    Google Scholar 

  3. Ayasse M, Engels W, Hefetz A, Lübke G, Francke W (1990) Ontogenetic patterns in amounts and proportions of Dufour’s gland volatile secretions in virgin and nesting queens of Lasioglossum malachurum (Hymenoptera: Halictidae). Z Naturforsch 45:709–714

    CAS  Google Scholar 

  4. Ayasse M, Engels W, Hefetz A, Tengö J, Lübke G, Francke W (1993) Ontogenetic patterns of volatiles identified in Dufour’s gland extracts from queens and workers of the primitively eusocial halictine bee, Lasioglossum malachurum (Hymenoptera: Halictidae). Insect Soc 40:41–58

    Google Scholar 

  5. Ayasse M, Engels W, Lübke G, Taghizadeh T, Francke W (1999) Mating expenditures reduced via female sex pheromone modulation in the primitively eusocial halictine bee, Lasioglossum (Evylaeus) malachurum (Hymenoptera: Halictidae). Behav Ecol Sociobiol 45:95–106

    Google Scholar 

  6. Badyaev AV, Duckworth RA (2003) Context-dependent sexual advertisement: plasticity in development of sexual ornamentation throughout the lifetime of a passerine bird. J Evol Biol 16:1065–1076

    CAS  PubMed  Google Scholar 

  7. Billen J, Morgan ED (1998) Pheromone communication in social insects: sources and secretions. In: Vander Meer RK, Breed MD, Espelie KE, Winston M (eds) Pheromone communication in social insects: ants, wasps, bees and termites. Westview Press, Boulder

    Google Scholar 

  8. Bourke AFG (1999) Colony size, social complexity and reproductive conflict in social insects. J Evol Biol 12:245–257

    Google Scholar 

  9. Brady SG, Sipes S, Pearson A, Danforth BN (2006) Recent and simultaneous origins of eusociality in halictid bees. Proc Royal Soc B 273:1643–1649

    Google Scholar 

  10. Brothers DJ, Michener CD (1974) Interactions in colonies of primitively social bees: III. Ethometry of division of labor in Lasioglossum zephyrum (Hymenoptera: Halictidae). J Comp Physiol 90:129–168

    Google Scholar 

  11. Brückner A, Heethoff M (2017) A chemo-ecologists’ practical guide to compositional data analysis. Chemoecology 27:33–46

    Google Scholar 

  12. Cane JH (1981) Dufour’s gland secretion in the cell linings of bees (Hymenoptera: Apoidea). J Chem Ecol 7:403–410

    CAS  PubMed  Google Scholar 

  13. Cane JH (1983) Chemical evolution and chemosystematics of the Dufour’s gland secretions of the lactone-producing bees (Hymenoptera: Colletidae, Halictidae, and Oxaeidae). Evolution 37:657–674

    CAS  PubMed  Google Scholar 

  14. Cane JH (1987) Estimation of bee size using intertegular span (Apoidea). J Kansas Entomol Soc 60:145–147

    Google Scholar 

  15. Cane JH, Gerdin S, Wife G (1983) Mandibular gland secretions of solitary bees (Hymenoptera: Apoidea): potential for nest cell disinfection. J Kansas Entomol Soc 56:199–204

    Google Scholar 

  16. Cardinal S, Danforth BN (2011) The antiquity and evolutionary history of social behavior in bees. PLoS One 6:e21086

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Carlson DA, Bernier UR, Sutton BD (1998) Elution patterns from capillary GC for methyl-branched alkanes. J Chem Ecol 24:1845–1865

    CAS  Google Scholar 

  18. Conte YL, Hefetz A (2008) Primer pheromones in social Hymenoptera. Annu Rev Entomol 53:523–542

    PubMed  Google Scholar 

  19. Cronin AL, Hirata M (2003) Social polymorphism in the sweat bee Lasioglossum (Evylaeus) baleicum (Cockerell) (Hymenoptera, Halictidae) in Hokkaido, northern Japan. Insect Soc 50:379–386

    Google Scholar 

  20. Cuvillier-Hot V, Cobb M, Malosse C, Peeters C (2001) Sex, age and ovarian activity affect cuticular hydrocarbons in Diacamma ceylonense, a queenless ant. J Insect Physiol 47:485–493

    CAS  PubMed  Google Scholar 

  21. d'Ettorre P, Heinze J, Schulz C, Francke W, Ayasse M (2004) Does she smell like a queen? Chemoreception of a cuticular hydrocarbon signal in the ant Pachycondyla inversa. J Exp Biol 207:1085–1091

    CAS  PubMed  Google Scholar 

  22. Duffield RM, Fernandes A, Lamb C, Wheeler JW, Eickwort GC (1981) Macrocyclic lactones and isopentenyl esters in the Dufour’s gland secretion of halictine bees (Hymenoptera: Halictidae). J Chem Ecol 7:319–331

    CAS  PubMed  Google Scholar 

  23. Eickwort GC, Eickwort JM, Gordon J, Eickwort MA, Wcislo WT (1996) Solitary behavior in a high-altitude population of the social sweat bee Halictus rubicundus (Hymenoptera: Halictidae). Behav Ecol and Sociobiol 38:227–233

    Google Scholar 

  24. Field J (2008) The ecology and evolution of helping in hover wasps (Hymenoptera: Stenogastrinae). In: Korb J, Heinze J (eds) Ecology of social evolution. Springer-Verlag, Berlin

    Google Scholar 

  25. Field J, Paxton RJ, Soro A, Bridge C (2010) Cryptic plasticity underlies a major evolutionary transition. Curr Biol 20:2028–2031

    CAS  PubMed  Google Scholar 

  26. Fletcher DJC, Ross KG (1985) Regulation of reproduction in eusocial Hymenoptera. Annu Rev Entomol 30:319–343

    Google Scholar 

  27. Gibbs AG (2002) Lipid melting and cuticular permeability: new insights into an old problem. J Insect Physiol 48:391–400

    CAS  PubMed  Google Scholar 

  28. Gibbs J, Brady SG, Kanda K, Danforth BN (2012) Phylogeny of halictine bees supports a shared origin of eusociality for Halictus and Lasioglossum (Apoidea: Anthophila: Halictidae). Mol Phylogenet Evol 65:926–939

    PubMed  Google Scholar 

  29. Ginzel, MD, and Blomquist, GJ (2016) Insect hydrocarbons: biochemistry and chemical ecology. In: Cohen, E, and Moussian, B (eds.) Extracellular composite matrices in arthropods. Springer International Publishing, Switzerland

  30. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Paleontol Electron 4:9

    Google Scholar 

  31. Hefetz A, Fales HM, Batra SWT (1979) Natural polyesters: Dufour’s gland macrocyclic lactones form laminesters in Colletes bees. Science 204:415–417

    CAS  PubMed  Google Scholar 

  32. Hefetz A, Soroker V, Dahbi A, Malherbe MC, Fresneau D (2001) The front basitarsal brush in Pachycondyla apicalis and its role in hydrocarbon circulation. Chemoecology 11:17–24

    CAS  Google Scholar 

  33. Holman L (2012) Costs and constraints conspire to produce honest signaling: insights from an ant queen pheromone. Evolution 66:2094–2105

    CAS  PubMed  Google Scholar 

  34. Holman L (2014) Conditional helping and evolutionary transitions to eusociality and cooperative breeding. Behav Ecol 25:1173–1182

    Google Scholar 

  35. Holman L, Dreier S, d'Ettorre P (2010a) Selfish strategies and honest signalling: reproductive conflicts in ant queen associations. Proc Royal Soc B 277:2007–2015

    CAS  Google Scholar 

  36. Holman L, Jørgensen CG, Nielsen J, d'Ettorre P (2010b) Identification of an ant queen pheromone regulating worker sterility. Proc Royal Soc B 277:3793–3800

    CAS  Google Scholar 

  37. Jones BM, Kingwell C, Wcislo WT, Robinson GE (2017) Caste-biased gene expression in a facultatively eusocial bee suggests a role for genetic accommodation in the evolution of eusociality. Proc Royal Soc B 284:20162228

    Google Scholar 

  38. Kapheim KM, Bernal SP, Smith AR, Nonacs P, Wcislo WT (2011) Support for maternal manipulation of developmental nutrition in a facultatively eusocial sweat bee, Megalopta genalis (Halictidae). Behav Ecol Sociobiol 65:1179–1190

    PubMed  PubMed Central  Google Scholar 

  39. Kapheim KM, Smith AR, Ihle KE, Amdam GV, Nonacs P, Wcislo WT (2012) Physiological variation as a mechanism for developmental caste-biasing in a facultatively eusocial sweat bee. Proc R Soc B 279:1437–1446

    PubMed  Google Scholar 

  40. Kapheim KM, Smith AR, Nonacs P, Wcislo WT, Wayne RK (2013) Foundress polyphenism and the origins of eusociality in a facultatively eusocial sweat bee, Megalopta genalis (Halictidae). Behav Ecol Sociobiol 67:331–340

    Google Scholar 

  41. Kapheim KM, Chan T-Y, Smith AR, Wcislo WT, Nonacs P (2016) Ontogeny of division of labor in a facultatively eusocial sweat bee Megalopta genalis. Insect Soc 63:185–191

    Google Scholar 

  42. Kapheim KM, Jones BM, Pan H, Li C, Harpur BA, Kent CF, Zayed A, Ioannidis P, Waterhouse RM, Kingwell C, Stolle E, Avalos A, Zhang G, McMillan WO, Wcislo WT (2020) Developmental plasticity shapes social traits and selection in a facultatively eusocial bee. PNAS 117:13615–13625

    CAS  PubMed  Google Scholar 

  43. Kather R, Martin SJ (2015) Evolution of cuticular hydrocarbons in the Hymenoptera: a meta-analysis. J Chem Ecol 41:871–883

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Keller L, Nonacs P (1993) The role of queen pheromones in social insects: queen control or queen signal? Anim Behav 45:787–794

    Google Scholar 

  45. Kocher SD, Grozinger CM (2011) Cooperation, conflict, and the evolution of queen pheromones. J Chem Ecol 37:1263–1275

    CAS  PubMed  Google Scholar 

  46. Kocher SD, Paxton RJ (2014) Comparative methods offer powerful insights into social evolution in bees. Apidologie 45:289–305

    Google Scholar 

  47. Krasulová J, Hanus R, Kutalová K, Šobotník J, Sillam-Dussès D, Tichý M, Valterová I (2012) Chemistry and anatomy of the frontal gland in soldiers of the sand termite Psammotermes hybostoma. J Chem Ecol 38:557–565

    PubMed  Google Scholar 

  48. Kruskal JB (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:115–129

    Google Scholar 

  49. Leigh EG (1999) Tropical forest ecology: a view from Barro Colorado Island. Oxford University Press, Oxford

    Google Scholar 

  50. Leonhardt SD, Menzel F, Nehring V, Schmitt T (2016) Ecology and evolution of communication in social insects. Cell 164:1277–1287

    CAS  PubMed  Google Scholar 

  51. Liebig J (2010) Hydrocarbon profiles indicate fertility and dominance status in ant, bee, and wasp colonies. In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge

    Google Scholar 

  52. Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Oxford University Press, Oxford

    Google Scholar 

  53. Michener CD (1974) The social behavior of the bees: a comparative study. Harvard University Press, Cambridge, MA

    Google Scholar 

  54. Michener CD, Brothers DJ (1974) Were workers of eusocial Hymenoptera initially altruistic or oppressed? PNAS 71:671–674

    CAS  PubMed  Google Scholar 

  55. Mitra A (2013) Function of the Dufour’s gland in solitary and social Hymenoptera. J Hymenopt Res 35:33–58

    Google Scholar 

  56. Mitra A, Gadagkar R (2011) Can Dufour’s gland compounds honestly signal fertility in the primitively eusocial wasp Ropalidia marginata? Naturwissenschaften 98:157–161

    CAS  PubMed  Google Scholar 

  57. Mitra A, Gadagkar R (2012) Queen signal should be honest to be involved in maintenance of eusociality: chemical correlates of fertility in Ropalidia marginata. Insect Soc 59:251–255

    Google Scholar 

  58. Monnin T (2006) Chemical recognition of reproductive status in social insects. Ann Zool Fenn 43:531–549

    Google Scholar 

  59. Oi CA, van Zweden JS, Oliveira RC, Van Oystaeyen A, Nascimento FS, Wenseleers T (2015) The origin and evolution of social insect queen pheromones: novel hypotheses and outstanding problems. BioEssays 37:808–821

    CAS  PubMed  Google Scholar 

  60. Oi CA, Millar JG, van Zweden JS, Wenseleers T (2016) Conservation of queen pheromones across two species of vespine wasps. J Chem Ecol 42:1175–1180

    CAS  PubMed  Google Scholar 

  61. Orlova M, Malka O, Hefetz A (2020) Choosing the best: honeybee workers can assess reproductive quality of the queen through pheromonal signalling in simultaneous choice assays. Apidologie 51:291–306

    Google Scholar 

  62. Packer L (1990) Solitary and eusocial nests in a population of Augochlorella striata (Provaneher) (Hymenoptera; Halictidae) at the northern edge of its range. Behav Ecol Sociobiol 27:339–344

    Google Scholar 

  63. Peram PS, Vences M, Schulz S (2017) A synthetic dodecanolide library for the identification of putative semiochemicals emitted by mantellid frogs. Org Biomol Chem 15:6967–6977

    CAS  PubMed  Google Scholar 

  64. Peso M, Elgar MA, Barron AB (2015) Pheromonal control: reconciling physiological mechanism with signalling theory. Biol Rev 90:542–559

    PubMed  Google Scholar 

  65. Polidori C, Geyer M, Schmitt T (2020) Do Sphecodes cuckoo bees use chemical insignificance to invade the nests of the social Lasioglossum bee hosts? Apidologie 51:147–162

    Google Scholar 

  66. Princen SA, Oliveira RC, Ernst UR, Millar JG, van Zweden JS, Wenseleers T (2019) Honeybees possess a structurally diverse and functionally redundant set of queen pheromones. Proc R Soc B 286:20190517

    CAS  PubMed  Google Scholar 

  67. Purcell J (2011) Geographic patterns in the distribution of social systems in terrestrial arthropods. Biol Rev 86:475–491

    PubMed  Google Scholar 

  68. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. URL: https://www.R-project.org/

  69. Rehan SM, Toth AL (2015) Climbing the social ladder: the molecular evolution of sociality. Trends Ecol Evol 30:426–433

    PubMed  Google Scholar 

  70. Rehan SM, Leys R, Schwarz MP (2012) A mid-cretaceous origin of sociality in Xylocopine bees with only two origins of true worker castes indicates severe barriers to eusociality. PLoS One 7:e34690

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Richards MH, von Wettberg EJ, Rutgers AC (2003) A novel social polymorphism in a primitively eusocial bee. PNAS 100:7175–7180

    CAS  PubMed  Google Scholar 

  72. Schiestl FP, Ayasse M (2000) Post-mating odor in females of the solitary bee, Andrena nigroaenea (Apoidea, Andrenidae), inhibits male mating behavior. Behav Ecol Sociobiol 48:303–307

    Google Scholar 

  73. Schulz S, Peram PS, Menke M, Hötling S, Röpke R, Melnik K, Poth D, Mann F, Henrichsen S, Dreyer K (2017) Mass spectrometry of aliphatic macrolides, important semiochemicals or pheromones. J Nat Prod 80:2572–2582

    CAS  PubMed  Google Scholar 

  74. Schwarz MP, Richards MH, Danforth BN (2007) Changing paradigms in insect social evolution: sights from Halictine and Allodapine bees. Annu Rev Entomol 52:127–150

    CAS  PubMed  Google Scholar 

  75. Smith BH, Weller C (1989) Social competition among gynes in halictine bees: the influence of bee size and pheromones on behavior. J Insect Behav 2:397–411

    Google Scholar 

  76. Smith BH, Wenzel JW (1988) Pheromonal covariation and kinship in social bee Lasioglossum zephyrum (Hymenoptera: Halictidae). J Chem Ecol 14:87–94

    CAS  PubMed  Google Scholar 

  77. Smith AR, Kapheim KM, Pérez-Ortega B, Brent CS, Wcislo WT (2013) Juvenile hormone levels reflect social opportunities in the facultatively eusocial sweat bee Megalopta genalis (Hymenoptera: Halictidae). Horm Behav 63:1–4

    CAS  PubMed  Google Scholar 

  78. Smith AR, Kapheim KM, Wcislo WT (2019) Survival and productivity benefits of sociality vary seasonally in the tropical, facultatively eusocial bee Megalopta genalis. Insect Soc 66:555–568

    Google Scholar 

  79. Soro A, Ayasse M, Zobel MU, Paxton RJ (2011) Kin discriminators in the eusocial sweat bee Lasioglossum malachurum: the reliability of cuticular and Dufour’s gland odours. Behav Ecol Sociobiol 65:641–653

    Google Scholar 

  80. Soucy SL, Danforth BN (2002) Phylogeography of the socially polymorphic sweat bee Halictus rubicundus (Hymenoptera: Halictidae). Evolution 56:330–341

    PubMed  Google Scholar 

  81. Steiger S, Schmitt T, Schaefer HM (2011) The origin and dynamic evolution of chemical information transfer. Proc Royal Soc B 278:970–979

  82. Steitz I, Ayasse M (2020) Macrocyclic lactones act as a queen pheromone in a primitively eusocial sweat bee. Curr Biol 30:1136–1141

    CAS  PubMed  Google Scholar 

  83. Steitz I, Kingwell C, Paxton RJ, Ayasse M (2018) Evolution of caste-specific chemical profiles in halictid bees. J Chem Ecol 44:827–837

    CAS  PubMed  Google Scholar 

  84. Steitz I, Brandt K, Biefel F, Minat Ä, Ayasse M (2019) Queen recognition signals in two primitively eusocial halictid bees: evolutionary conservation and caste-specific perception. Insects 10:416

    PubMed Central  Google Scholar 

  85. Stökl J, Steiger S (2017) Evolutionary origin of insect pheromones. Curr Opin Insect Sci 24:36–42

    PubMed  Google Scholar 

  86. Strohm E, Herzner G, Kaltenpoth M, Boland W, Schreier P, Geiselhardt S, Peschke K, Schmitt T (2008) The chemistry of the postpharyngeal gland of female European Beewolves. J Chem Ecol 34:575–583

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Tengö J, Bergström G (1975) All-trans-farnesyl hexanoate and geranyl octanoate in the Dufour gland secretion of Andrena (Hymenoptera: Apidae). J Chem Ecol 1:253–268

    Google Scholar 

  88. Tierney SM, Fischer CN, Rehan SM, Kapheim KM, Wcislo WT (2013) Frequency of social nesting in the sweat bee Megalopta genalis (Halictidae) does not vary across a rainfall gradient, despite disparity in brood production and body size. Insect Soc 60:163–172

    Google Scholar 

  89. Van Oystaeyen A, Oliveira RC, Holman L, van Zweden JS, Romero C, Oi CA, d’Ettorre P, Khalesi M, Billen J, Wäckers F, Millar JG, Wenseleers T (2014) Conserved class of queen pheromones stops social insect workers from reproducing. Science 343:287–290

    PubMed  Google Scholar 

  90. Wcislo WT (1997) Behavioral environments of sweat bees (Halictinae) in relation to variability in social organization. In: Choe JC, Crespi BJ (eds) Social behavior in insects and arachnids. Cambridge University Press, Cambridge

    Google Scholar 

  91. Wcislo WT, Danforth BN (1997) Secondarily solitary: the evolutionary loss of social behavior. Trends Ecol Evol 12:468–474

    CAS  PubMed  Google Scholar 

  92. Wcislo WT, Fewell JH (2017) Sociality in bees. In: Rubenstein DR, Abbott P (eds) Comparative Social Evolution. Cambridge University Press, Cambridge

    Google Scholar 

  93. Wcislo WT, Gonzalez VH (2006) Social and ecological contexts of trophallaxis in facultatively social sweat bees, Megalopta genalis and M. ecuadoria (Hymenoptera, Halictidae). Insect Soc 53:220–225

    Google Scholar 

  94. Wilson EO (1971) The insect societies. Belknap Press of Harvard University Press, Cambridge, MA

  95. Wittwer B, Hefetz A, Simon T, Murphy LEK, Elgar MA, Pierce NE, Kocher SD (2017) Solitary bees reduce investment in communication compared with their social relatives. PNAS 114:6569–6574

    CAS  PubMed  Google Scholar 

  96. Wyatt TD (2014) Pheromones and animal behavior: chemical signals and signatures. Cambridge University Press, Cambridge

    Google Scholar 

  97. Yagound B, Blacher P, Fresneau D, Poteaux C, Châline N (2014) Status discrimination through fertility signaling allows ants to regulate reproductive conflicts. Anim Behav 93:25–35

    Google Scholar 

  98. Yagound B, Gouttefarde R, Leroy C, Belibel R, Barbaud C, Fresneau D, Chameron S, Poteaux, Châline N (2015) Fertility signaling and partitioning of reproduction in the ant Neoponera apicalis. J Chem Ecol 41:557–566

    CAS  PubMed  Google Scholar 

  99. Yasui H, Akino T, Yasuda T, Fukaya M, Ono H, Wakamura S (2003) Ketone components in the contact sex pheromone of the white-spotted longicorn beetle, Anoplophora malasiaca, and pheromonal activity of synthetic ketones. Entomol Exp Appl 107:167–176

    CAS  Google Scholar 

  100. Zhou X, Rokas A, Berger SL, Liebig J, Ray A, Zwiebel LJ (2015) Chemoreceptor evolution in Hymenoptera and its implications for the evolution of eusociality. Genome Biol Evol 7:2407–2416

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Stefan Schulz for assistance with interpretation of lactone spectra, Robert Raguso for helpful comments on early drafts of the manuscript, and Jocelyn Millar for guidance with derivatization procedures and methylalkane chemical standards. Yasuharu Yoshimi graciously contributed macrocyclic lactone chemical standards. We also thank Gabriel Trujillo, Isis Lopez, and Esther Velasquez for field assistance, and Barro Colorado Island staff for logistical support in Panamá.

Funding

C. Kingwell was supported by fellowships from the Smithsonian Tropical Research Institute, the Natural Sciences and Engineering Research Council of Canada (NSERC), and Cornell University.

Author information

Affiliations

Authors

Contributions

C. Kingwell, M. Ayasse, and W. Wcislo conceptualized the study. C. Kingwell collected field data, conducted statistical analyses, and wrote the first draft of the manuscript. C. Kingwell, K. Böröczky, M. Ayasse, and I. Steitz determined the identities of chemical compounds. All authors contributed to the writing of the final manuscript.

Corresponding author

Correspondence to Callum Kingwell.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Supplementary Information

ESM 1

(PDF 4517 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kingwell, C., Böröczky, K., Steitz, I. et al. Cuticular and Dufour’s Gland Chemistry Reflect Reproductive and Social State in the Facultatively Eusocial Sweat Bee Megalopta genalis (Hymenoptera: Halictidae). J Chem Ecol 47, 420–432 (2021). https://doi.org/10.1007/s10886-021-01262-1

Download citation

Keywords

  • Cuticular hydrocarbons
  • Macrocyclic lactones
  • Facultative eusociality
  • Queen pheromones
  • Dufour’s gland
  • Halictidae