Skip to main content
Log in

Mosquito Attractants

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Vector control and personal protection against anthropophilic mosquitoes mainly rely on the use of insecticides and repellents. The search for mosquito-attractive semiochemicals has been the subject of intense studies for decades, and new compounds or odor blends are regularly proposed as lures for odor-baited traps. We present a comprehensive and up-to-date review of all the studies that have evaluated the attractiveness of volatiles to mosquitoes, including individual chemical compounds, synthetic blends of compounds, or natural host or plant odors. A total of 388 studies were analysed, and our survey highlights the existence of 105 attractants (77 volatile compounds, 17 organism odors, and 11 synthetic blends) that have been proved effective in attracting one or several mosquito species. The exhaustive list of these attractants is presented in various tables, while the most common mosquito attractants - for which effective attractiveness has been demonstrated in numerous studies – are discussed throughout the text. The increasing knowledge on compounds attractive to mosquitoes may now serve as the basis for complementary vector control strategies, such as those involving lure-and-kill traps, or the development of mass trapping. This review also points out the necessity of further improving the search for new volatile attractants, such as new compound blends in specific ratios, considering that mosquito attraction to odors may vary over the life of the mosquito or among species. Finally, the use of mosquito attractants will undoubtedly have an increasingly important role to play in future integrated vector management programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abong’o B, Yu X, Donnelly MJ, Geier M, Gibson G, Gimnig J, ter Kuile F, Lobo NF, Ochomo E, Munga S, Ombok M, Samuels A, Torr SJ, Hawkes FM (2018) Host Decoy Trap (HDT) with cattle odour is highly effective for collection of exophagic malaria vectors. Parasites Vectors 11:1–11

    Article  Google Scholar 

  • Achee NL, Grieco JP, Vatandoost H et al (2019) Alternative strategies for mosquito-borne arbovirus control. PLoS Negl Trop Dis 13:e0006822

    Article  PubMed  PubMed Central  Google Scholar 

  • Acree F, Turner R, Gouck H, Beroza M, Smith N (1968) L-Lactic acid: a mosquito attractant isolated from humans. Science 161:1346–1347

    Article  CAS  PubMed  Google Scholar 

  • Adamczyk K, Garncarczyk A, Antonczak P, Wcislo-Dziadecka D (2020) The foot microbiome. J Cosmet Dermatol 19:1039–1043

    Article  PubMed  Google Scholar 

  • Afify A, Galizia CG (2015) Chemosensory cues for mosquito oviposition site selection. J Med Entomol 52:120–130

    Article  CAS  PubMed  Google Scholar 

  • Akaratovic KI, Kiser JP, Gordon S, Abadam CF (2017) Evaluation of the Trapping Performance of Four Biogents AG Traps and Two Lures for the Surveillance of Aedes albopictus and Other Host-Seeking Mosquitoes. J Am Mosq Control Assoc 33:108–115

    Article  PubMed  Google Scholar 

  • Akhoundi M, Jourdain F, Chandre F, Delaunay P, Roiz D (2018) Effectiveness of a field trap barrier system for controlling Aedes albopictus: a “removal trapping” strategy. Parasites Vectors 11:1–7

    Article  Google Scholar 

  • Allan S, Bernier UR, Kline D (2006) Attraction of mosquitoes to volatiles associated with blood. J Vector Ecol 31:71–79

    Article  CAS  PubMed  Google Scholar 

  • Anderson JF, McKnight S, Ferrandino FJ (2012) Aedes japonicus japonicus and associated woodland species attracted to Centers for Disease Control and Prevention miniature light traps baited with carbon dioxide and the Traptech® mosquito lure. J Am Mosq Control Ass 28:184–191

    Article  Google Scholar 

  • Andreasen M, Birtles A, Curtis C, Wood R (2004) Enhanced blood feeding of Anopheles mosquitoes (Diptera: Culicidae) through membranes with applied host odour. Bull Entomol Res 94:291–295

    Article  CAS  PubMed  Google Scholar 

  • Andrianjafy TM, Ramanandraibe VV, Andrianarijaona ET, Ramarosandratana NH, Ravaomanarivo LH, Mavingui P, Lemaire M (2020) Field assessment of 4-hydroxycoumarin as an attractant for anthropophilic Anopheles spp. vectors of malaria in Madagascar. Sci Rep 10:3048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrianjafy TM, Ravaomanarivo LH, Ramanandraibe VV, Rakotondramanga MF, Mavingui P, Lemaire M (2017) New bioassay to evaluate repellency and attractively of chemical products against adults mosquitoes Aedes albopictus and Culex quinquefasciatus. Ann Comm Med Practice 3:1020–1031

    Google Scholar 

  • Andrianjafy TM, Ravaomanarivo LH, Ramanandraibe VV, Rakotondramanga MF, Mavingui P, Lemaire M (2018) Synthesis, bioassays and field evaluation of hydroxycoumarins and their alkyl derivatives as repellents or kairomones for Aedes albopictus Skuse (Diptera: Culicidae). J Chem Ecol 44:299–311

    Article  CAS  PubMed  Google Scholar 

  • Ansell J, Hamilton K, Pinder M, Walraven G, Lindsay S (2002) Short-range attractiveness of pregnant women to Anopheles gambiae mosquitoes. Trans R Soc Trop Med Hyg 96:113–116

    Article  CAS  PubMed  Google Scholar 

  • Ara K, Hama M, Akiba S et al (2006) Foot odor due to microbial metabolism and its control. Can J Microbiol 52:357–364

    Article  CAS  PubMed  Google Scholar 

  • Asmare Y, Hill SR, Hopkins RJ, Tekie H, Ignell R (2017) The role of grass volatiles on oviposition site selection by Anopheles arabiensis and Anopheles coluzzii. Malar J 16:1–9

    Article  Google Scholar 

  • Baak-Baak CM, Rodríguez-Ramírez AD, García-Rejón JE, Ríos-Delgado S, Torres-Estrada JL (2013) Development and laboratory evaluation of chemically-based baited ovitrap for the monitoring of Aedes aegypti. J Vector Ecol 38:175–181

    Article  PubMed  Google Scholar 

  • Bakker JW, Loy DE, Takken W, Hahn BH, Verhulst NO (2020) Attraction of mosquitoes to primate odours and implications for zoonotic Plasmodium transmission. Med Vet Entomol 34:17–26

    Article  CAS  PubMed  Google Scholar 

  • Balestrino F, Schaffner F, Forgia D, Paslaru A, Torgerson PR, Mathis A, Veronesi E (2016) Field evaluation of baited traps for surveillance of Aedes japonicus japonicus in Switzerland. Med Vet Entomol 30:64–72

    Article  CAS  PubMed  Google Scholar 

  • Bar-Zeev M, Maibach H, Khan A (1977) Studies on the attraction of Aedes aegypti (Diptera: Culicidae) to man. J Med Entomol 14:113–120

    Article  CAS  PubMed  Google Scholar 

  • Barredo E, DeGennaro M (2020) Not just from blood: mosquito nutrient acquisition from nectar sources. Trends Parasitol 36:473–484

    Article  PubMed  Google Scholar 

  • Barrera R, Amador M, Acevedo V, Caban B, Felix G, Mackay AJ (2014) Use of the CDC autocidal gravid ovitrap to control and prevent outbreaks of Aedes aegypti (Diptera: Culicidae). J Med Entomol 51:145–154

    Article  PubMed  PubMed Central  Google Scholar 

  • Batista EP, Costa EF, Silva AA (2014) Anopheles darlingi (Diptera: Culicidae) displays increased attractiveness to infected individuals with Plasmodium vivax gametocytes. Parasites Vectors 7:1–4

    Article  Google Scholar 

  • Batista EP, Ngowo H, Opiyo M et al (2018) Field evaluation of the BG-Malaria trap for monitoring malaria vectors in rural Tanzanian villages. PloS one 13:e0205358

    Article  PubMed  PubMed Central  Google Scholar 

  • Batista EP, Ngowo HS, Opiyo M, Shubis GK, Meza FC, Okumu FO, Eiras AE (2017) Semi-field assessment of the BG-Malaria trap for monitoring the African malaria vector, Anopheles arabiensis. PLoS One 12:e0186696

    Article  PubMed  PubMed Central  Google Scholar 

  • Bazin M, Williams CR (2018) Mosquito traps for urban surveillance: collection efficacy and potential for use by citizen scientists. J Vector Ecol 43:98–103

    Article  PubMed  Google Scholar 

  • Beavers G, Hanafi H, Tetreault G (1998) Response of mosquitoes (Diptera: Culicidae) to carbon dioxide and octenol in Egypt. J Egyptian Soc Parasitol 28:303–312

    CAS  Google Scholar 

  • Becker N, Zgomba M, Petric D, Ludwig M (1995) Comparison of carbon dioxide, octenol and a host-odour as mosquito attractants in the Upper Rhine Valley, Germany. Med Vet Entomol 9:377–380

    Article  CAS  PubMed  Google Scholar 

  • Beehler J, Millar J, Mulla M (1993) Synergism between chemical attractants and visual cues influencing oviposition of the mosquito, Culex quinquefasciatus (Diptera: Culicidae). J Chem Ecol 19:635–644

    Article  CAS  PubMed  Google Scholar 

  • Beehler J, Millar J, Mulla M (1994) Field evaluation of synthetic compounds mediating oviposition in Culex mosquitoes (Diptera: Culicidae). J Chem Ecol 20:281–291

    Article  CAS  PubMed  Google Scholar 

  • Bentley MD, Day JF (1989) Chemical ecology and behavioral aspects of mosquito oviposition. Annu Rev Entomol 34:401–421

    Article  CAS  PubMed  Google Scholar 

  • Bentley MD, McDaniel IN, Yatagai M, Lee H-P, Maynard R (1979) p-Cresol: an oviposition attractant of Aedes triseriatus. Environ Entomol 8:206–209

    Article  CAS  Google Scholar 

  • Bernier U, Kline D, Schreck C, Yost R, Barnard D (2002) Chemical analysis of human skin emanations: comparison of volatiles from humans that differ in attraction of Aedes aegypti (Diptera: Culicidae). J Am Mosq Control Assoc 18:186–195

    CAS  PubMed  Google Scholar 

  • Bernier UR, Kline DL, Allan SA, Barnard DR (2007) Laboratory comparison of Aedes aegypti attraction to human odors and to synthetic human odor compounds and blends. J Am Mosq Control Assoc 23:288–293

    Article  PubMed  Google Scholar 

  • Bernier UR, Kline DL, Barnard DR, Posey KH, Booth MM, Yost RA (2001) Chemical composition that attract arthropods. US Patent No 6, 267, 953, Washington, DC

    Google Scholar 

  • Bernier UR, Kline DL, Barnard DR, Schreck CE, Yost RA (2000) Analysis of human skin emanations by gas chromatography/mass spectrometry. 2. Identification of volatile compounds that are candidate attractants for the yellow fever mosquito (Aedes aegypti). Anal Chem 72:747–756

    Article  CAS  PubMed  Google Scholar 

  • Bernier UR, Kline DL, Posey KH, Booth MM, Yost RA, Barnard DR (2003) Synergistic attraction of Aedes aegypti (L.) to binary blends of L-lactic acid and acetone, dichloromethane, or dimethyl disulfide. J Med Entomol 40:653–656

    Article  CAS  PubMed  Google Scholar 

  • Best A, Lieberman DE, Kamilar JM (2019) Diversity and evolution of human eccrine sweat gland density. J Therm Biol 84:331–338

    Article  PubMed  Google Scholar 

  • Bhalala HV, Smith JD, O'Dea BA, Arias JR (2010) The efficacy of the BG-Sentinel™ CO2 nozzle in collecting host-seeking mosquitoes in Fairfax County, Virginia. J Am Mosq Control Assoc 26:226–228

    Article  PubMed  Google Scholar 

  • Blackwell A, Hansson B, Wadhams L, Pickett J (1993) A behavioural and electrophysiological study of ovi position cues for Culex quinquefasciatus. Physiol Entomol 18:343–348

    Article  Google Scholar 

  • Bohbot JD, Dickens JC (2009) Characterization of an enantioselective odorant receptor in the yellow fever mosquito Aedes aegypti. PLoS One 4:e7032

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonizzoni M, Gasperi G, Chen X, James AA (2013) The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol 29:460–468

    Article  PubMed  PubMed Central  Google Scholar 

  • Bosch OJ, Geier M, Boeckh J (2000) Contribution of fatty acids to olfactory host finding of female Aedes aegypti. Chem Senses 25:323–330

    Article  CAS  PubMed  Google Scholar 

  • Bowen M (1992) Patterns of sugar feeding in diapausing and nondiapausing Culex pipiens (Diptera: Culicidae) females. J Med Entomol 29:843–849

    Article  CAS  PubMed  Google Scholar 

  • Braks M, Anderson R, Knols B (1999) Infochemicals in mosquito host selection: human skin microflora and Plasmodium parasites. Parasitol Today 15:409–413

    Article  CAS  PubMed  Google Scholar 

  • Braks M, Meijerink J, Takken W (2001) The response of the malaria mosquito, Anopheles gambiae, to two components of human sweat, ammonia and l-lactic acid, in an olfactometer. Physiol Entomol 26:142–148

    Article  CAS  Google Scholar 

  • Braks MA, Scholte EJ, Takken W, Dekker T (2000) Microbial growth enhances the attractiveness of human sweat for the malaria mosquito, Anopheles gambiae sensu stricto (Diptera: Culicidae). Chemoecology 10:129–134

    Article  Google Scholar 

  • Braks MA, Takken W (1999) Incubated human sweat but not fresh sweat attracts the malaria mosquito Anopheles gambiae sensu stricto. J Chem Ecol 25:663–672

    Article  CAS  Google Scholar 

  • Brouwer R (1960) Variations in human body odour as a cause of individual differences of attraction for malaria mosquitoes. Trop Geogr Med 12:186–192

    Google Scholar 

  • Brown A (1951) Factors in the attractiveness of bodies for mosquitoes. Nature 167:202–202

    Article  CAS  PubMed  Google Scholar 

  • Brown A, Carmichael A (1961) Lysine and alanine as mosquito attractants. J Econom Entomol 54:317–324

    Article  CAS  Google Scholar 

  • Brown A, Sarkaria D, Thompson R (1951) Studies on the responses of the female Aedes mosquito. Part I.—The search for attractant vapours. Bull Entomol Res 42:105–114

    Article  CAS  Google Scholar 

  • Brown AW (1966) The attraction of mosquitoes to hosts. JAMA 196:249–252

    Article  CAS  PubMed  Google Scholar 

  • Burgess L, Brown A (1957) Studies on the Responses of the female Aedes Mosquito: Part VIII.—The attractiveness of beef blood to Aedes aegypti (L.). Bull Entomol Res 48:783–793

    Article  CAS  Google Scholar 

  • Burkett D, Lee WJ, Lee KW et al (2001) Light, carbon dioxide, and octenol-baited mosquito trap and host-seeking activity evaluations for mosquitoes in a malarious area of the Republic of Korea. J Am Mosq Control Assoc 17:196–205

    CAS  PubMed  Google Scholar 

  • Burkot T (1988) Non-random host selection by anopheline mosquitoes. Parasitol Today 4:156–162

    Article  CAS  PubMed  Google Scholar 

  • Busula AO, Takken W, Loy DE, Hahn BH, Mukabana WR, Verhulst NO (2015) Mosquito host preferences affect their response to synthetic and natural odour blends. Malar J 14:133–142

    Article  PubMed  PubMed Central  Google Scholar 

  • Buttery RG, Kamm JA (1980) Volatile components of alfalfa: possible insect host plant attractants. J Agr Food Chem 28:978–981

    Article  CAS  Google Scholar 

  • Byrd AL, Belkaid Y, Segre JA (2018) The human skin microbiome. Nature Rev Microbiol 16:143

    Article  CAS  Google Scholar 

  • Canyon D, Hii J (1997) Efficacy of carbon dioxide, 1-octen-3-ol, and lactic acid in modified Fay-Prince traps as compared to man-landing catch of Aedes aegypti. J Am Mosq Control Assoc 13:66–70

    CAS  PubMed  Google Scholar 

  • Carlson DA, Smith N, Gouck HK, Godwin DR (1973) Yellowfever mosquitoes: compounds related to lactic acid that attract females. J Econom Entomol 66:329–331

    Article  CAS  Google Scholar 

  • Carnevale P, Frézil J, Bosseno M, Le Pont F, Lancien J, Organization WH (1976) Etude de l'agressivité d'Anopheles gambiae A en fonction de l'âge et du sexe des sujets humains. Bull World Health Organization 56:147

  • Caroprese A, Gabbanini S, Beltramini C, Lucchi E, Valgimigli L (2009) HS-SPME-GC-MS analysis of body odor to test the efficacy of foot deodorant formulations. Skin Res Technol 15:503–510

    Article  PubMed  Google Scholar 

  • Chaiphongpachara T, Chitsawaeng C, Chansukh KK (2019) Comparison of the larvicidal and adult mosquito attractant efficacy between straw mushroom Volvariella volvacea extract and octenol (1-octen-3-ol) on mosquito vectors (Diptera: Culicidae). J Appl Pharm Sci 9:95–99

    Article  CAS  Google Scholar 

  • Chaiphongpachara T, Padidpoo O, Chansukh K, Sumruayphol S (2018) Efficacies of five edible mushroom extracts as odor baits for resting boxes to attract mosquito vectors: a field study in Samut Songkhram province, Thailand. Trop Biomed 35:653–663

    CAS  PubMed  Google Scholar 

  • Charpentier MJ, Barthes N, Proffit M, Bessière JM, Grison C (2012) Critical thinking in the chemical ecology of mammalian communication: roadmap for future studies. Funct Ecol 26:769–774

    Article  Google Scholar 

  • Chen W, Metsälä M, Vaittinen O, Halonen L (2014) The origin of mouth-exhaled ammonia. J Breath Res 8:036003

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Kearney CM (2015) Nectar protein content and attractiveness to Aedes aegypti and Culex pipiens in plants with nectar/insect associations. Acta Trop 146:81–88

    Article  PubMed  Google Scholar 

  • Choo YM, Xu P, Hwang JK et al (2018) Reverse chemical ecology approach for the identification of an oviposition attractant for Culex quinquefasciatus. Proc Natl Acad Sci USA 115:714–719

    Article  CAS  PubMed  Google Scholar 

  • Cilek J, Ikediobi CO, Hallmon CF et al (2012) Evaluation of several novel alkynols, alkenols, and selected host odor blends as attractants to female Aedes albopictus and Culex quinquefasciatus. J Am Mosq Control Assoc 28:199–205

    Article  CAS  PubMed  Google Scholar 

  • Clyde D, Shute G (1958) Selective feeding habits of anophelines amongst Africans of different ages. Am J Trop Med Hygiene 7:543–545

    Article  CAS  Google Scholar 

  • Codeço CT, Lima AWS, Araújo SC et al (2015) Surveillance of Aedes aegypti: comparison of house index with four alternative traps. PLoS Negl Trop Dis 9:e0003475

    Article  PubMed  PubMed Central  Google Scholar 

  • Cook J, Majeed S, Ignell R, Pickett J, Birkett M, Logan J (2011a) Enantiomeric selectivity in behavioural and electrophysiological responses of Aedes aegypti and Culex quinquefasciatus mosquitoes. Bull Entomol Res 101:541–550

    Article  CAS  PubMed  Google Scholar 

  • Cook JI, Majeed S, Ignell R, Pickett JA, Birkett MA, Logan JG (2011b) Enantiomeric selectivity in behavioural and electrophysiological responses of Aedes aegypti and Culex quinquefasciatus mosquitoes. Bull Entomol Res 101:541–550

    Article  CAS  PubMed  Google Scholar 

  • Cooper R, Frances S, Popat S, Waterson D (2004) The effectiveness of light, 1-octen-3-ol, and carbon dioxide as attractants for anopheline mosquitoes in Madang Province. Papua New Guinea. J Am Mosq Control Assoc 20:239–242

    CAS  PubMed  Google Scholar 

  • Cooperband M, Cardé R (2006) Orientation of Culex mosquitoes to carbon dioxide-baited traps: flight manoeuvres and trapping efficiency. Med Vet Entomol 20:11–26

    Article  CAS  PubMed  Google Scholar 

  • Cooperband MF, McElfresh JS, Millar JG, Carde RT (2008) Attraction of female Culex quinquefasciatus Say (Diptera: Culicidae) to odors from chicken feces. J Insect Physiol 54:1184–1192

    Article  CAS  PubMed  Google Scholar 

  • Cork A, Park K (1996) Identification of electrophysiologically-active compounds for the malaria mosquito, Anopheles gambiae, in human sweat extracts. Med Vet Entomol 10:269–276

    Article  CAS  PubMed  Google Scholar 

  • Cornet S, Nicot A, Rivero A, Gandon S (2013) Malaria infection increases bird attractiveness to uninfected mosquitoes. Ecol Lett 16:323–329

    Article  PubMed  Google Scholar 

  • Costantini C, Birkett MA, Gibson G et al (2001) Electroantennogram and behavioural responses of the malaria vector Anopheles gambiae to human-specific sweat components. Med Vet Entomol 15:259–266

    Article  CAS  PubMed  Google Scholar 

  • Costantini C, Gibson G, Sagnon NF, Torre AD, Brady J, Coluzzi M (1996) Mosquito responses to carbon dioxide in a West African Sudan savanna village. Med Vet Entomol 10:220–227

    Article  CAS  PubMed  Google Scholar 

  • Costantini C, Sagnon NF, della Torre A, Diallo M, Brady J, Gibson G, Coluzzi M (1998) Odor-mediated host preferences of West African mosquitoes, with particular reference to malaria vectors. Am J Trop Med Hygiene 58:56–63

    Article  CAS  Google Scholar 

  • Crepeau TN, Healy SP, Bartlett-Healy K, Unlu I, Farajollahi A, Fonseca DM (2013) Effects of Biogents Sentinel trap field placement on capture rates of adult Asian tiger mosquitoes. Aedes albopictus. PloS one 8:e60524

  • Cribellier A, van Erp JA, Hiscox A, Lankheet MJ, van Leeuwen JL, Spitzen J, Muijres FT (2018) Flight behaviour of malaria mosquitoes around odour-baited traps: capture and escape dynamics. Royal Soc Open Sci 5:180246

  • Crumb S (1922) A Mosquito Attractant. Science (Washington) 4:1426

    Google Scholar 

  • Curtis C (1986) Fact and fiction in mosquito attraction and repulsion. Parasitol Today 2:316–318

    Article  CAS  PubMed  Google Scholar 

  • Czarnowski D, Gorski J, Jóźwiuk J, Boroń-Kaczmarska A (1992) Plasma ammonia is the principal source of ammonia in sweat European. J Appl Physiol Occup Physiol 65:135–137

    Article  CAS  Google Scholar 

  • da Cruz Ferreira DA, Degener CM, de Almeida Marques-Toledo C, Bendati MM, Fetzer LO, Teixeira CP, Eiras ÁE (2017) Meteorological variables and mosquito monitoring are good predictors for infestation trends of Aedes aegypti, the vector of dengue, chikungunya and Zika. Parasites Vectors 10:78

    Article  PubMed  PubMed Central  Google Scholar 

  • da Silva Paixão K, de Castro Pereira I, Lopes Alves Bottini L, Eduardo Eiras Á (2015) Volatile semiochemical-conditioned attraction of the male yellow fever mosquito, Aedes aegypti, to human hosts. J Vector Ecol 40:1–6

    Article  PubMed  Google Scholar 

  • Davis EE, Sokolove PG (1976) Lactic acid-sensitive receptors on the antennae of the mosquito, Aedes aegypti. J Comp Physiol A 105:43–54

    Article  CAS  Google Scholar 

  • Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK (2013) Microbial volatile emissions as insect semiochemicals. J Chem Ecol 39:840–859

    Article  CAS  PubMed  Google Scholar 

  • Daykin P, Kellogg F, Wright R (1965) Host-finding and repulsion of Aedes aegypti. Can Entomol 97:239–263

    Article  Google Scholar 

  • De Boer JG, Robinson A, Powers SJ et al (2017) Odours of Plasmodium falciparum-infected participants influence mosquito-host interactions. Sci Rep 7:1–9

    Google Scholar 

  • De Jong R, Knols B (1995) Selection of biting sites on man by two malaria mosquito species. Experientia 51:80–84

    Article  PubMed  Google Scholar 

  • De Long DM, Davidson RH, Peffly RL et al (1949) Insect behaviour : mosquito attraction and repellency. Final Summary Report, Project. Office of the Quartermaster-General, Washington, p 272

    Google Scholar 

  • de Melo DPO, Scherrer LR, Eiras AE (2012) Dengue fever occurrence and vector detection by larval survey, ovitrap and MosquiTRAP: a space-time clusters analysis. PloS one 7:e42125

    Article  PubMed  PubMed Central  Google Scholar 

  • De Moraes CM, Stanczyk NM, Betz HS, Pulido H, Sim DG, Read AF, Mescher MC (2014) Malaria-induced changes in host odors enhance mosquito attraction. Proc Natl Acad Sci 111:11079–11084

    Article  PubMed  Google Scholar 

  • De Moraes CM, Wanjiku C, Stanczyk NM et al (2018) Volatile biomarkers of symptomatic and asymptomatic malaria infection in humans. Proc Natl Acad Sci 115:5780–5785

    Article  PubMed  Google Scholar 

  • Debboun M, Strickman D (2013) Insect repellents and associated personal protection for a reduction in human disease. Med Vet Entomol 27:1–9

    Article  CAS  PubMed  Google Scholar 

  • Degener C, Eiras AE, Azara TMF et al (2014) Evaluation of the effectiveness of mass trapping with BG-sentinel traps for dengue vector control: a cluster randomized controlled trial in Manaus, Brazil. J Med Entomol 51:408–420

    Article  CAS  PubMed  Google Scholar 

  • Degener CM, Geier M, Kline D et al (2019) Field trials to evaluate the effectiveness of the Biogents®-Sweetscent lure in combination with several commercial mosquito traps and to assess the effectiveness of the Biogents-Mosquitaire trap with and without carbon dioxide. J Am Mosq Control Assoc 35:32–39

    Article  PubMed  Google Scholar 

  • DeGennaro M, McBride CS, Seeholzer L et al (2013) orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature 498:487–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dekker T, Carde RT (2011) Moment-to-moment flight manoeuvres of the female yellow fever mosquito (Aedes aegypti L.) in response to plumes of carbon dioxide and human skin odour. J Exp Biol 214:3480–3494

    Article  PubMed  Google Scholar 

  • Dekker T, Geier M, Carde RT (2005) Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odours. J Exp Biol 208:2963–2972

    Article  PubMed  Google Scholar 

  • Dekker T, Steib B, Cardé R, Geier M (2002) L-lactic acid: a human-signifying host cue for the anthropophilic mosquito Anopheles gambiae. Med Vet Entomol 16:91–98

    Article  CAS  PubMed  Google Scholar 

  • Dekker T, Takken W (1998) Differential responses of mosquito sibling species Anopheles arabiensis and An. quadriannulatus to carbon dioxide, a man or a calf. Med Vet Entomol 12:136–140

    Article  CAS  PubMed  Google Scholar 

  • Dekker T, Takken W, Knols BG, Bouman E, van de Laak S, de Bever A, Huisman PW (1998) Selection of biting sites on a human host by Anopheles gambiae ss, An. arabiensis and An. quadriannulatus. Entomol Exp Appl 87:295-300

  • Derbyshire PJ, Barr H, Davis F, Higson SP (2012) Lactate in human sweat: a critical review of research to the present day. J Physiol Sci 62:429–440

    Article  CAS  PubMed  Google Scholar 

  • Dethier V, Browne BL, Smith CN (1960) The designation of chemicals in terms of the responses they elicit from insects. J Econom Entomol 53:134–136

    Article  CAS  Google Scholar 

  • Diaz-Santiz E, Rojas JC, Casas-Martinez M, Cruz-Lopez L, Malo EA (2020) Rat volatiles as an attractant source for the Asian tiger mosquito, Aedes albopictus. Sci Rep 10:5170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickschat JS (2017) Fungal volatiles–a survey from edible mushrooms to moulds. Nat Prod Rep 34:310–328

    Article  CAS  PubMed  Google Scholar 

  • Diez-Fernandez A, Martinez-de la Puente J, Gangoso L, Lopez P, Soriguer R, Martin J, Figuerola J (2020) Mosquitoes are attracted by the odour of Plasmodium-infected birds. Int J Parasitol

  • Ding YM, Hu Y, Yu BT, Mo XC, Mo JC (2016) Laboratory evaluation of differential attraction of Culex pipiens pallens to fruit-based sugar baits. Acta Trop 163:20–25

    Article  CAS  PubMed  Google Scholar 

  • Dormont L, Bessiere JM, Cohuet A (2013) Human skin volatiles: a review. J Chem Ecol 39:569–578

    Article  CAS  PubMed  Google Scholar 

  • Duchemin JB, Tsy JMLP, Rabarison P, Roux J, Coluzzi M, Costantini C (2001) Zoophily of Anopheles arabiensis and An. gambiae in Madagascar demonstrated by odour-baited entry traps. Med Vet Entomol 15:50–57

    Article  CAS  PubMed  Google Scholar 

  • Duffield GE, Acri DJ, George GF, Sheppard AD, Beebe NW, Ritchie SA, Burkot TR (2019) Diel flight activity of wild-caught Anopheles farauti (ss) and An. hinesorum malaria mosquitoes from northern Queensland, Australia. Parasites Vectors 12(48)

  • Duvall LB, Ramos-Espiritu L, Barsoum KE, Glickman JF, Vosshall LB (2019) Small-molecule agonists of Aedes aegypti neuropeptide Y receptor block mosquito biting. Cell 176:687–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dye-Braumuller K, Fredregill C, Debboun M (2020) Mosquito control. In: Mosquitoes, Communities, and Public Health in Texas. pp 249-278.

  • Edman JD (1979) Orientation of some Florida mosquitoes (Diptera: Culicidae) toward small vertebrates and carbon dioxide in the field. J Med Entomol 15:292–296

    Article  Google Scholar 

  • Eiras Á, Rose A, Geier M (2004) New tools for monitoring gravid females of the mosquitoes Aedes aegypti and Aedes albopictus (Diptera: Culicidae), vectors of dengue and other arboviral diseases International. J Med Entomol 293(51)

  • Eiras A, Santanna A (2001) Atraentes de Oviposição de Mosquitos. Patente; Privilégio e Inovação. n. PI0106701-0 Atraentes de Oviposição de Mosquitos. 20 de dez de:2001

  • Eiras AE, Jepson P (1994) Responses of female Aedes aegypti (Diptera: Culicidae) to host odours and convection currents using an olfactometer bioassay. Bull Entomol Res 84:207–211

    Article  Google Scholar 

  • Eiras AE, Jepson PC (1991) Host location by Aedes aegypti (Diptera: Culicidae): a wind tunnel study of chemical cues. Bull Entomol Res 81:151–160

    Article  Google Scholar 

  • Eiras ÁE, Resende MC (2009) Preliminary evaluation of the" Dengue-MI" technology for Aedes aegypti monitoring and control. Cadernos de Saúde Pública 25:S45–S58

    Article  PubMed  Google Scholar 

  • El-Sisi AG, Mahmoud HI, Abdel-Hamid YM, Moselh WA, Taha RH (2019) Laboratory evaluation of some local components as attractants to the mosquito, Culex pipiens females. Egyptian Acad J Biol Sci E Med Entomol Parasitol 11:75–85

    Google Scholar 

  • Emami SN, Lindberg BG, Hua S et al (2017) A key malaria metabolite modulates vector blood seeking, feeding, and susceptibility to infection. Science 355:1076–1080

    Article  CAS  PubMed  Google Scholar 

  • Englbrecht C, Gordon S, Venturelli C, Rose A, Geier M (2015) Evaluation of BG-Sentinel trap as a management tool to reduce Aedes albopictus nuisance in an urban environment in Italy. J Am Mosq Control Assoc 31:16–25

    Article  PubMed  Google Scholar 

  • Erb M, Veyrat N, Robert CA, Xu H, Frey M, Ton J, Turlings TC (2015) Indole is an essential herbivore-induced volatile priming signal in maize. Nature Comm 6:1–10

    Article  Google Scholar 

  • Essen PV, Kemme J, Ritchie S, Kay B (1994) Differential responses of Aedes and Culex mosquitoes to octenol or light in combination with carbon dioxide in Queensland, Australia. Med Vet Entomol 8:63–67

    Article  PubMed  Google Scholar 

  • Evans MV, Hintz CW, Jones L, Shiau J, Solano N, Drake JM, Murdock CC (2019) Microclimate and larval habitat density predict adult Aedes albopictus abundance in urban areas. Am J Trop Med Hygiene 101:362–370

    Article  Google Scholar 

  • Farajollahi A, Kesavaraju B, Price DC, Williams GM, Healy SP, Gaugler R, Nelder MP (2009) Field efficacy of BG-Sentinel and industry-standard traps for Aedes albopictus (Diptera: Culicidae) and West Nile virus surveillance. J Med Entomol 46:919–925

    Article  PubMed  Google Scholar 

  • Fávaro EA, Dibo MR, Mondini A et al (2006) Physiological state of Aedes (Stegomyia) aegypti mosquitoes captured with MosquiTRAPs™ in Mirassol, São Paulo, Brazil. J Vector Ecol 31:285–291

    Article  PubMed  Google Scholar 

  • Fernandez-Grandon GM, Gezan SA, Armour JA, Pickett JA, Logan JG (2015) Heritability of attractiveness to mosquitoes. PLoS One 10:e0122716

    Article  PubMed  PubMed Central  Google Scholar 

  • Fierer N, Hamady M, Lauber CL, Knight R (2008) The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci 105:17994–17999

    Article  CAS  PubMed  Google Scholar 

  • Foster WA (1995) Mosquito sugar feeding and reproductive energetics. Annu Rev Entomol 40:443–474

    Article  CAS  PubMed  Google Scholar 

  • Foster W, Takken W (2004a) Nectar-related vs. human-related volatiles: behavioural response and choice by female and male Anopheles gambiae (Diptera: Culicidae) between emergence and first feeding. Bull Entomol Res 94:145–157

    Article  CAS  PubMed  Google Scholar 

  • Foster WA, Takken W (2004b) Nectar-related vs. human-related volatiles: behavioural response and choice by female and male Anopheles gambiae (Diptera: Culicidae) between emergence and first feeding. Bull Entomol Res 94:145–157

    Article  CAS  PubMed  Google Scholar 

  • Frei J, Krober T, Troccaz M, Starkenmann C, Guerin PM (2017) Behavioral response of the malaria mosquito, Anopheles gambiae, to human sweat inoculated with axilla bacteria and to volatiles composing human axillary odor. Chem Senses 42:121–131

    Article  CAS  PubMed  Google Scholar 

  • Gallagher M, Wysocki CJ, Leyden JJ, Spielman A, Sun X, Preti G (2008) Analyses of volatile organic compounds from human skin. British J Dermatol 159:780–791

    Article  CAS  Google Scholar 

  • Ganesan K, Mendki MJ, Suryanarayana MV, Prakash S, Malhotra RC (2006) Studies of Aedes aegypti (Diptera: Culicidae) ovipositional responses to newly identified semiochemicals from conspecific eggs. Austral J Entomol 45:75–80

    Article  Google Scholar 

  • Geier M, Boeckh J (1999) A new Y-tube olfactometer for mosquitoes to measure the attractiveness of host odours. Entomol Exp Appl 92:9–19

    Article  Google Scholar 

  • Geier M, Bosch OJ, Boeckh J (1999a) Ammonia as an attractive component of host odour for the yellow fever mosquito, Aedes aegypti. Chem Senses 24:647–653

  • Geier M, Bosch OJ, Boeckh J (1999b) Influence of odour plume structure on upwind flight of mosquitoes towards hosts. J Exp Biol 202:1639–1648

    Article  PubMed  Google Scholar 

  • Geier M, Bosh O, Steib B, Rose A, Boeckh J (2002) Odour-guides host finding mosquitoes: identification of new attractants on human skin. In: Proc Int Conf Urban pests, 2002. Citeseer, pp 37-46

  • Geier M, Rose A, Eiras A (2004a) Insektenfalle. Worldwide patent no. WO 04/054358 A2

  • Geier M, Rose A, Eiras Á (2004b) A new lure for host-seeking anthropophilic mosquitoes and a novel type of a simple, non-CO2 mosquito trap. Int J Med Microbiol 293:50

    Google Scholar 

  • Geier M, Sass H, Boeckh J (1996) A search for components in human body odour that attract females of Aedes aegypti. In: Olfaction in mosquitoes-host interactions. Ciba Fundation Symposium. pp 132-148

  • Ghaninia M, Majeed S, Dekker T, Hill SR, Ignell R (2019) Hold your breath - Differential behavioral and sensory acuity of mosquitoes to acetone and carbon dioxide. PLoS One 14:e0226815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillies M (1980) The role of carbon dioxide in host-finding by mosquitoes (Diptera: Culicidae): a review. Bull Entomol Res 70:525–532

    Article  Google Scholar 

  • Gillies M, Wilkes T (1969) A comparison of the range of attraction of animal baits and of carbon dioxide for some West African mosquitoes. Bull Entomol Res 59:441–456

    Article  CAS  PubMed  Google Scholar 

  • Gillies M, Wilkes T (1970) The range of attraction of single baits for some West African mosquitoes. Bull Entomol Res 60:225–235

    Article  CAS  PubMed  Google Scholar 

  • Gjullin C (1961) Oviposition responses of Culex pipiens quinquefasciatus Say to waters treated with various chemicals. Mosq News 21:2

    Google Scholar 

  • Gjullin C, Johnsen J, Plapp J (1965) The effect of odors released by various waters on the oviposition sites selected by two species of Culex. Mosq News 25:3

    Google Scholar 

  • Gladden L (2004) Lactate metabolism: a new paradigm for the third millennium. J Physiol 558:5–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez PV, González Audino PA, Masuh HM (2014) Electrophysiological and behavioural response of Aedes albopictus to n-heinecosane, an ovipositional pheromone of Aedes aegypti. Entomol Exp Appl 151:191–197

    Article  CAS  Google Scholar 

  • Gouagna LC, Poueme RS, Dabiré KR, Ouédraogo JB, Fontenille D, Simard F (2010) Patterns of sugar feeding and host plant preferences in adult males of An. gambiae (Diptera: Culicidae). J Vector Ecol 35:267–276

    Article  PubMed  Google Scholar 

  • Govella NJ, Maliti DF, Mlwale AT et al (2016) An improved mosquito electrocuting trap that safely reproduces epidemiologically relevant metrics of mosquito human-feeding behaviours as determined by human landing catch. Malar J 15:465

    Article  PubMed  PubMed Central  Google Scholar 

  • Grice EA, Kong HH, Conlan S et al (2009) Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grison C, Carrasco D, Pelissier F, Moderc A (2020) Reflexion on bio-sourced mosquito repellents: nature, activity and preparation, Front Ecol Evol 8

  • Guha L, Seenivasagan T, Iqbal ST, Agrawal OP, Parashar BD (2014) Behavioral and electrophysiological responses of Aedes albopictus to certain acids and alcohols present in human skin emanations. Parasitol Res 113:3781–3787

    Article  PubMed  Google Scholar 

  • Haddow A (1942) The mosquito fauna and climate of native huts at Kisumu, Kenya. Bull Entomol Res 33:91–142

    Article  Google Scholar 

  • Hall D, Beevor P, Cork A, Nesbitt BF, Vale G (1984) 1-Octen-3-ol. A potent olfactory stimulant and attractant for tsetse isolated from cattle odours. Int J Trop Insect Sci 5:335–339

    Article  CAS  Google Scholar 

  • Hao H, Sun J, Dai J (2012) Preliminary analysis of several attractants and spatial repellents for the mosquito, Aedes albopictus using an olfactometer. J Insect Sci 12:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Hao H, Sun J, Dai J (2013) Dose-dependent behavioral response of the mosquito Aedes albopictus to floral odorous compounds. J Insect Sci 13:127

    Article  PubMed  PubMed Central  Google Scholar 

  • Hapairai LK, Joseph H, Sang MAC et al (2013) Field evaluation of selected traps and lures for monitoring the filarial and arbovirus vector, Aedes polynesiensis (Diptera: Culicidae), in French Polynesia. J Med Entomol 50:731–739

    Article  PubMed  Google Scholar 

  • Hawaria D, Santiago D, Yewhalaw D (2016) Efficient attractants and simple odor-baited sticky trap for surveillance of Anopheles arabiensis Patton mosquito in Ethiopia. J Inf Develop Countries 10:82–89

    Article  CAS  Google Scholar 

  • Hawkes F, Young S, Gibson G (2012) Modification of spontaneous activity patterns in the malaria vector Anopheles gambiae sensu stricto when presented with host-associated stimuli. Physiol Entomol 37:233–240

    Article  Google Scholar 

  • Hawkes FM, Dabire RK, Sawadogo SP, Torr SJ, Gibson G (2017) Exploiting Anopheles responses to thermal, odour and visual stimuli to improve surveillance and control of malaria. Sci Rep 7:17283

    Article  PubMed  PubMed Central  Google Scholar 

  • Headlee TJ (1934) Mosquito work in New Jersey for the year 1933. Proc New Jers Mosq Exterm Assoc 21:8–37

    Google Scholar 

  • Healy T, Copland M (1995) Activation of Anopheles gambiae mosquitoes by carbon dioxide and human breath. Med Vet Entomol 9:331–336

    Article  CAS  PubMed  Google Scholar 

  • Healy T, Copland M (2000) Human sweat and 2-oxopentanoic acid elicit a landing response from Anopheles gambiae. Med Vet Entomol 14:195–200

    Article  CAS  PubMed  Google Scholar 

  • Healy T, Copland M, Cork A, Przyborowska A, Halket J (2002) Landing responses of Anopheles gambiae elicited by oxocarboxylic acids. Med Vet Entomol 16:126–132

    Article  CAS  PubMed  Google Scholar 

  • Healy T, Jepson P (1988) The location of floral nectar sources by mosquitoes: the long-range responses of Anopheles arabiensis Patton (Diptera: Culicidae) to Achillea millefolium flowers and isolated floral odour. Bull Entomol Res 78:651–657

    Article  Google Scholar 

  • Himeidan YE, Elbashir MI, Adam I (2004) Attractiveness of pregnant women to the malaria vector, Anopheles arabiensis, in Sudan. Ann Trop Med Parasitol 98:631–633

    Article  CAS  PubMed  Google Scholar 

  • Hiscox A, Otieno B, Kibet A et al (2014) Development and optimization of the Suna trap as a tool for mosquito monitoring and control. Mal J 13:257

    Article  Google Scholar 

  • Hiwat H, Andriessen R, Md R, Koenraadt CJM, Takken W (2011) Carbon dioxide baited trap catches do not correlate with human landing collections of Anopheles aquasalis in Suriname. Memórias do Instituto Oswaldo Cruz 106:360–364

    Article  PubMed  Google Scholar 

  • Hoel D, Kline D, Allan S, Grant A (2007) Evaluation of carbon dioxide, 1-octen-3-ol, and lactic acid as baits in mosquito magnet™ pro traps for Aedes albopictus in north central Florida. J Am Mosq Control Assoc 23:11–18

    Article  CAS  PubMed  Google Scholar 

  • Hoel DF, Dunford JC, Kline DL et al (2015) A Comparison of carbon dioxide sources for mosquito capture in Centers for Disease Control and Prevention light traps on the Florida Gulf Coast. J Am Mosq Control Assoc 31:248–258

    Article  PubMed  Google Scholar 

  • Hoel DF, Marika JA, Dunford JC, Irish SR, Geier M, Obermayr U, Wirtz RA (2014a) Optimizing collection of Anopheles gambiae s.s. (Diptera: Culicidae) in Biogents Sentinel traps. J Med Entomol 51:1268–1275

    Article  PubMed  Google Scholar 

  • Hoel DF, Marika JA, Dunford JC, Irish SR, Geier M, Obermayr U, Wirtz RA (2014b) Optimizing collection of Anopheles gambiae ss (Diptera: Culicidae) in biogents sentinel traps. J Med Entomol 51:1268–1275

    Article  PubMed  Google Scholar 

  • Homan T, Hiscox A, Mweresa CK et al (2016) The effect of mass mosquito trapping on malaria transmission and disease burden (SolarMal): a stepped-wedge cluster-randomised trial. TLancet 388:1193–1201

    Article  Google Scholar 

  • Howlett F (1910) The influence of temperature upon the biting of mosquitoes. Parasitology 3:479–484

    Article  Google Scholar 

  • Huffaker CB (1942) Developments in mosquito control: tests with carbon dioxide and light as attractants for mosquitoes, with species emphasis on the malaria mosquito, Anopheles quadrimaculatus. Mosq News 2:28–31

    Google Scholar 

  • Huffaker CB, Back RC (1943) A study of methods of sampling mosquito populations. J Econom Entomol 36:561–569

    Article  CAS  Google Scholar 

  • Ibáñez-Justicia A, Smitz N, den Hartog W et al (2020) Detection of exotic mosquito species (Diptera: Culicidae) at international airports in Europe. Int J Environ Res Public Health 17:3450

    Article  PubMed Central  Google Scholar 

  • Irish S, Batengana B, Eiras A, Cameron M (2015) Evaluation of the AtrAedes™ lure for collection of Culex quinquefasciatus in gravid traps. J Am Mosq Control Assoc 31:107–109

    Article  CAS  PubMed  Google Scholar 

  • Irish SR, Chandre F, N'Guessan R (2008) Comparison of octenol-and BG Lure®-baited Biogents Sentinel traps and an encephalitis virus surveillance trap in Portland. J Am Mosq Control Assoc 24:393–398

    Article  PubMed  Google Scholar 

  • Jackson TC, Zhang YV, Sime PJ, Phipps RP, Kottmann RM (2017) Development of an accurate and sensitive method for lactate analysis in exhaled breath condensate by LC MS/MS. J Chrom B 1061:468–473

    Article  Google Scholar 

  • Jacob JW, Tchouassi DP, Lagat ZO, Mathenge EM, Mweresa CK, Torto B (2018) Independent and interactive effect of plant-and mammalian-based odors on the response of the malaria vector, Anopheles gambiae. Acta trop 185:98–106

    Article  CAS  PubMed  Google Scholar 

  • Jaleta KT, Hill SR, Birgersson G, Tekie H, Ignell R (2016) Chicken volatiles repel host-seeking malaria mosquitoes. Malaria J 15:1–9

    Article  Google Scholar 

  • James A, Casey J, Hyliands D, Mycock G (2004) Fatty acid metabolism by cutaneous bacteria and its role in axillary malodour. World J Microbiol Biotechn 20:787–793

    Article  CAS  Google Scholar 

  • James AG, Austin CJ, Cox DS, Taylor D, Calvert R (2013) Microbiological and biochemical origins of human axillary odour. FEMS Microbiol Ecol 83:527–540

    Article  CAS  PubMed  Google Scholar 

  • Jawara M, Awolola TS, Pinder M, Jeffries D, Smallegange RC, Takken W, Conway DJ (2011) Field testing of different chemical combinations as odour baits for trapping wild mosquitoes in The Gambia. PLoS One 6:e19676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jawara M, Smallegange RC, Jeffries D et al (2009) Optimizing odor-baited trap methods for collecting mosquitoes during the malaria season in The Gambia. PLoS One 4:e8167

    Article  PubMed  PubMed Central  Google Scholar 

  • Jerry DCT, Mohammed T, Mohammed A (2017) Yeast-generated CO2 : A convenient source of carbon dioxide for mosquito trapping using the BG-Sentinel® traps. Asian Pac J Trop Biomed 7:896–900

    Article  Google Scholar 

  • Jhumur US, Dötterl S, Jürgens A (2006) Naive and conditioned responses of Culex pipiens pipiens biotype molestus (Diptera: Culicidae) to flower odors. J Med Entomol 43:1164–1170

    Article  PubMed  Google Scholar 

  • Jhumur US, Dötterl S, Jürgens A (2007) Electrophysiological and behavioural responses of mosquitoes to volatiles of Silene otites (Caryophyllaceae). Arthropod-Plant Interact 1:245–254

    Article  Google Scholar 

  • Johnson BJ, Ritchie SA, Fonseca DM (2017) The state of the art of lethal oviposition trap-based mass interventions for arboviral control. Insects 8:5

    Article  PubMed Central  Google Scholar 

  • Kawada H, Honda S, Takagi M (2007) Comparative laboratory study on the reaction of Aedes aegypti and Aedes albopictus to different attractive cues in a mosquito trap. J Med Entomol 44:427–432

    Article  PubMed  Google Scholar 

  • Kearney J, Harnby D, Gowland G, Holland K (1984) The follicular distribution and abundance of resident bacteria on human skin. Microbiol 130:797–801

    Article  CAS  Google Scholar 

  • Kelly M, Su C-Y, Schaber C, Crowley JR, Hsu F-F, Carlson JR, Odom AR (2015) Malaria parasites produce volatile mosquito attractants. MBio 6:2

    Article  Google Scholar 

  • Kemibala EE, Mafra-Neto A, Dekker T et al (2020) A zooprophylaxis strategy using L-lactic acid (Abate) to divert host-seeking malaria vectors from human host to treated non-host animals. Malar J 19:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemme J, Van Essen P, Ritchie S, Kay B (1993) Response of mosquitoes to carbon dioxide and 1-octen-3-ol in southeast Queensland. Aus J Am Mosq Control Assoc 9:431–435

    CAS  Google Scholar 

  • Khan A, Maibach HI, Strauss WG (1969) Gross variations in the response to man among yellow-fever mosquito populations in the laboratory. J Econom Entomol 62:96–98

    Article  CAS  Google Scholar 

  • Kitau J, Pates H, Rwegoshora TR et al (2010) The effect of Mosquito Magnet® Liberty Plus trap on the human mosquito biting rate under semi-field conditions. J Am Mosq Control Assoc 26:287–294

    Article  PubMed  Google Scholar 

  • Kline D, Allan S, Bernier U, Welch C (2007) Evaluation of the enantiomers of 1-octen-3-ol and 1-octyn-3-ol as attractants for mosquitoes associated with a freshwater swamp in Florida. USA. Med Vet Entomol 21:323–331

    Article  CAS  Google Scholar 

  • Kline D, Dame D, Meisch M (1991a) Evaluation of 1-octen-3-ol and carbon dioxide as attractants for mosquitoes associated with irrigated rice fields in Arkansas. J Am Mosq Control Assoc 7:165–169

    CAS  PubMed  Google Scholar 

  • Kline D, Takken W, Wood J, Carlson D (1990a) Field studies on the potential of butanone, carbon dioxide, honey extract, l-octen-3-ol, L-lactic acid and phenols as attractants for mosquitoes. Med Vet Entomol 4:383–391

    Article  CAS  PubMed  Google Scholar 

  • Kline D, Wood J, Cornell J (1991b) Interactive effects of l-octen-3-ol and carbon dioxide on mosquito (Diptera: Culicidae) surveillance and control. J Med Entomol 28:254–258

    Article  CAS  PubMed  Google Scholar 

  • Kline D, Wood J, Morris C (1990b) Evaluation of 1-octen-3-ol as an attractant for Coquillettidia perturbans, Mansonia spp. and Culex spp. associated with phosphate mining operations. J Am Mosq Control Assoc 6:605–611

    CAS  PubMed  Google Scholar 

  • Kline DL (1999) Comparison of two American biophysics mosquito traps: the professional and a new counterflow geometry trap. J Am Mosq Control Assoc - Mosq News 15:276–282

    CAS  Google Scholar 

  • Kline DL (2002) Evaluation of various models of propane-powered mosquito traps. J Vector Ecol 27:1–7

    PubMed  Google Scholar 

  • Kline DL (2006) Traps and trapping techniques for adult mosquito control. J Am Mosq Control Assoc 22:490–496

    Article  PubMed  Google Scholar 

  • Kline DL (2007) Semiochemicals, traps/targets and mass trapping technology for mosquito management. J Am Mosq Control Assoc 23:241–251

    Article  PubMed  Google Scholar 

  • Kline DL, Bernier UR, Hogsette JA (2012) Efficacy of three attractant blends tested in combination with carbon dioxide against natural populations of mosquitoes and biting flies at the Lower Suwannee Wildlife Refuge. J Am Mosq Control Assoc 28:123–127

    Article  CAS  PubMed  Google Scholar 

  • Kline DL, Mann MO (1998) Evaluation of butanone, carbon dioxide, and 1-octen-3-ol as attractants for mosquitoes associated with north central Florida bay and cypress swamps. J Am Mosq Control Assoc 14:289–297

    CAS  PubMed  Google Scholar 

  • Klun JA, Kramer M, Debboun M (2013) Four simple stimuli that induce host-seeking and blood-feeding behaviors in two mosquito species, with a clue to DEET's mode of action. J Vector Ecol 38:143–153

    Article  PubMed  Google Scholar 

  • Knols B, De Jong R (1996) Limburger cheese as an attractant for the malaria mosquito Anopheles gambiae ss. Parasitol Today 12:159–161

    Article  CAS  PubMed  Google Scholar 

  • Knols BG, de Jong R, Takken W (1995) Differential attractiveness of isolated humans to mosquitoes in Tanzania. Trans Roy Soc Trop Med Hygiene 89:604–606

    Article  CAS  Google Scholar 

  • Knols BG, van Loon JJA, Cork A et al (1997) Behavioural and electrophysiological responses of the female malaria mosquito Anopheles gambiae (Diptera: Culicidae) to Limburger cheese volatiles. Bull Entomol Res 87:151–159

    Article  CAS  Google Scholar 

  • Knudsen JT, Eriksson R, Gershenzon J, Ståhl B (2006) Diversity and distribution of floral scent. Bot Rev 72(1)

  • Kramer WL, Mulla MS (1979) Oviposition attractants and repellents of mosquitoes: oviposition responses of Culex mosquitoes to organic infusions. Environ Entomol 8:1111–1117

    Article  Google Scholar 

  • Kröckel U, Rose A, Eiras ÁE, Geier M (2006) New tools for surveillance of adult yellow fever mosquitoes: comparison of trap catches with human landing rates in an urban environment. J Am Mosq Control Assoc 22:229–238

    Article  PubMed  Google Scholar 

  • Kusakabe Y, Ikeshoji T (1990) Comparative attractancy of physical and chemical stimuli to aedine mosquitoes. Med Entomol Zool 41:219–225

    Article  CAS  Google Scholar 

  • Kweka EJ, Mahande AM (2009) Comparative evaluation of four mosquitoes sampling methods in rice irrigation schemes of lower Moshi northern Tanzania. Malaria J 8:1–5

    Google Scholar 

  • Kweka EJ, Mwang'onde BJ, Kimaro E, Msangi S, Massenga CP, Mahande AM (2009) A resting box for outdoor sampling of adult Anopheles arabiensis in rice irrigation schemes of lower Moshi, northern Tanzania. Malaria J 8:1–6

    Google Scholar 

  • Laarman J (1958) The host-seeking behaviour of anopheline mosquitoes. Trop Geog Med 10:293–305

    CAS  Google Scholar 

  • Lacey ES, Carde RT (2011) Activation, orientation and landing of female Culex quinquefasciatus in response to carbon dioxide and odour from human feet: 3-D flight analysis in a wind tunnel. Med Vet Entomol 25:94–103

    Article  CAS  PubMed  Google Scholar 

  • Lacey ES, Carde RT (2012) Location of and landing on a source of human body odour by female Culex quinquefasciatus in still and moving air. Physiol Entomol 37:153–159

    Article  PubMed  PubMed Central  Google Scholar 

  • Lacroix R, Mukabana WR, Gouagna LC, Koella JC (2005) Malaria infection increases attractiveness of humans to mosquitoes. PLoS Biol 3:e298

    Article  PubMed  PubMed Central  Google Scholar 

  • Lahondere C, Vinauger C, Okubo RP, Wolff GH, Chan JK, Akbari OS, Riffell JA (2020) The olfactory basis of orchid pollination by mosquitoes. Proc Natl Acad Sci USA 117:708–716

    Article  CAS  PubMed  Google Scholar 

  • Lawal O, Ahmed WM, Nijsen TM, Goodacre R, Fowler SJ (2017) Exhaled breath analysis: a review of ‘breath-taking’methods for off-line analysis. Metabolomics 13:110

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Goff G, Damiens D, Ruttee AH et al (2017) Comparison of efficiency of BG-Sentinel traps baited with mice, mouse-litter, and CO2 lures for field sampling of male and female Aedes albopictus mosquitoes. Insects 8

  • Leal HM, Hwang JK, Tan K, Leal WS (2017) Attraction of Culex mosquitoes to aldehydes from human emanations. Sci Rep 7:1–10

    Article  Google Scholar 

  • Lefevre T, Gouagna LC, Dabire KR, Elguero E, Fontenille D, Costantini C, Thomas F (2009) Evolutionary lability of odour-mediated host preference by the malaria vector Anopheles gambiae. Trop Med Int Health 14:228–236

    Article  PubMed  Google Scholar 

  • Lega J, Brown H, Barrera R (2020) A 70% reduction in mosquito populations does not require removal of 70% of mosquitoes. J Med Entomol 57:1668–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li CX, Dong YD, Zhang XL et al (2010) Evaluation of octenol and Lurex as baits in Mosquito Magnet Pro traps to collect vector mosquitoes in China. J Am Mosq Control Assoc 26:449–451

    Article  PubMed  Google Scholar 

  • Lima JBP, Galardo AKR, Bastos LS, Lima AWS, Rosa-Freitas MG (2017) MosqTent: An individual portable protective double-chamber mosquito trap for anthropophilic mosquitoes. PLoS Negl Trop Dis 11:e0005245

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindh JM, Okal MN, Herrera-Varela M, Borg-Karlson AK, Torto B, Lindsay SW, Fillinger U (2015) Discovery of an oviposition attractant for gravid malaria vectors of the Anopheles gambiae species complex. Malar J 14:119

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindsay S, Adiamah J, Miller J, Pleass R, Armstrong J (1993) Variation in attractiveness of human subjects to malaria mosquitoes (Diptera: Culicidae) in The Gambia. J Med Entomol 30:368–373

    Article  CAS  PubMed  Google Scholar 

  • Lindsay S, Ansell J, Selman C, Cox V, Hamilton K, Walraven G (2000) Effect of pregnancy on exposure to malaria mosquitoes. Lancet 355:1972

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Dixon D, Bibbs CS, Xue R-D (2019) Autocidal gravid ovitrap incorporation with attractants for control of gravid and host-seeking Aedes aegypti (Diptera: Culicidae). J Med Entomol 56:576–578

    Article  CAS  PubMed  Google Scholar 

  • Liu N (2015) Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. Annu Rev Entomol 60:537–559

    Article  CAS  PubMed  Google Scholar 

  • Logan JG, Birkett MA, Clark SJ et al (2008) Identification of human-derived volatile chemicals that interfere with attraction of Aedes aegypti mosquitoes. J Chem Ecol 34:308

    Article  CAS  PubMed  Google Scholar 

  • Logan JG, Stanczyk NM, Hassanali A et al (2010) Arm-in-cage testing of natural human-derived mosquito repellents. Malar J 9:239

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorenz LM, Keane A, Moore JD et al (2013) Taxis assays measure directional movement of mosquitoes to olfactory cues. Parasites Vectors 6:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Lothrop HD, Wheeler SS, Fang Y, Reisen WK (2012) Use of scented sugar bait stations to track mosquito-borne arbovirus transmission in California. J Med Entomol 49:1466–1472

    Article  PubMed  PubMed Central  Google Scholar 

  • Maciel-de-Freitas R, Eiras ÁE, Lourenço-de-Oliveira R (2006) Field evaluation of effectiveness of the BG-Sentinel, a new trap for capturing adult Aedes aegypti (Diptera: Culicidae). Mem Inst Oswaldo Cruz 101:321–325

    Article  PubMed  Google Scholar 

  • Maciel-de-Freitas R, Peres RC, Alves F, Brandolini MB (2008) Mosquito traps designed to capture Aedes aegypti (Diptera: Culicidae) females: preliminary comparison of Adultrap, MosquiTRAP and backpack aspirator efficiency in a dengue-endemic area of Brazil. Mem Inst Oswaldo Cruz 103:602–605

    Article  PubMed  Google Scholar 

  • Maciel-de-Freitas R, Lourenço-de-Oliveira R (2011) Does targeting key-containers effectively reduce Aedes aegypti population density? Trop Med Int Health 16:965–973

    Article  PubMed  Google Scholar 

  • Mackay AJ, Amador M, Barrera R (2013) An improved autocidal gravid ovitrap for the control and surveillance of Aedes aegypti. Parasites Vectors 6:225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mafra-Neto A, Dekker T (2019) Novel odor-based strategies for integrated management of vectors of disease. Curr Opin Insect Sci 34:105–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Maibach HI, Skinner W, Strauss WG, Khan A (1966) Factors that attract and repel mosquitoes in human skin. JAMA 196:263–266

    Article  CAS  PubMed  Google Scholar 

  • Majeed S, Hill SR, Birgersson G, Ignell R (2016) Detection and perception of generic host volatiles by mosquitoes modulate host preference: context dependence of (R)-1-octen-3-ol. R Soc Open Sci 3:160467

    Article  PubMed  PubMed Central  Google Scholar 

  • Majeed S, Hill SR, Dekker T, Ignell R (2017) Detection and perception of generic host volatiles by mosquitoes: responses to CO2 constrains host-seeking behaviour. R Soc Open Sci 4:170189

    Article  PubMed  PubMed Central  Google Scholar 

  • Majeed S, Hill SR, Ignell R (2014) Impact of elevated CO2 background levels on the host-seeking behaviour of Aedes aegypti. J Exp Biol 217:598–604

    PubMed  Google Scholar 

  • Marek E, Volke J, Hawener I, Platen P, Mückenhoff K, Marek W (2010) Measurements of lactate in exhaled breath condensate at rest and after maximal exercise in young and healthy subjects. J Breath Res 4:017105

    Article  CAS  PubMed  Google Scholar 

  • Mathew N, Ayyanar E, Shanmugavelu S, Muthuswamy K (2013) Mosquito attractant blends to trap host seeking Aedes aegypti. Parasitol Res 112:1305–1312

    Article  PubMed  Google Scholar 

  • Matowo NS, Koekemoer LL, Moore SJ, Mmbando AS, Mapua SA, Coetzee M, Okumu FO (2016) Combining synthetic human odours and low-cost electrocuting grids to attract and kill outdoor-biting mosquitoes: field and semi-field evaluation of an improved mosquito landing box. PloS one 11:e0145653

    Article  PubMed  PubMed Central  Google Scholar 

  • Mauer DJ, Rowley WA (1999) Attraction of Culex pipiens pipiens (Diptera: Culicidae) to flower volatiles. J Med Entomol 36:503–507

    Article  CAS  PubMed  Google Scholar 

  • Mayer M, James J (1969) Attraction of Aedes aegypti (L.): responses to human arms, carbon dioxide, and air currents in a new type of olfactometer. Bull Entomol Res 58:629–642

    Article  Google Scholar 

  • Mboera L, Takken W (1997) Carbon dioxide chemotropism in mosquitoes (Diptera: Culicidae) and its potential in vector surveillance and management programmes. Med Vet Entomol 7:355–368

    Google Scholar 

  • Mboera L, Takken W (1999) Odour-mediated host preference of Culex quinquefasciatus in Tanzania. Entomol Exp Appl 92:83–88

    Article  Google Scholar 

  • Mboera L, Takken W, Mdira K, Chuwa G, Pickett J (2000a) Oviposition and behavioral responses of Culex quinquefasciatus to skatole and synthetic oviposition pheromone in Tanzania. J Chem Ecol 26:1193–1203

    Article  CAS  Google Scholar 

  • Mboera L, Takken W, Mdira K, Pickett J (2000b) Sampling gravid Culex quinquefasciatus (Diptera: Culicidae) in Tanzania with traps baited with synthetic oviposition pheromone and grass infusions. J Med Entomol 37:172–176

    Article  CAS  PubMed  Google Scholar 

  • Mboera L, Takken W, Sambu E (2000c) The response of Culex quinquefasciatus (Diptera: Culicidae) to traps baited with carbon dioxide, 1-octen-3-ol, acetone, butyric acid and human foot odour in Tanzania. Bull Entomol Res 90:155–159

    Article  CAS  PubMed  Google Scholar 

  • Mburu MM, Mweresa CK, Omusula P, Hiscox A, Takken W, Mukabana WR (2017) 2-Butanone as a carbon dioxide mimic in attractant blends for the Afrotropical malaria mosquitoes Anopheles gambiae and Anopheles funestus. Malar J 16:351

    Article  PubMed  PubMed Central  Google Scholar 

  • McBride CS, Baier F, Omondi AB et al (2014) Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515:222–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCall P, Harding G, Roberts J, Auty B (1996) Attraction and trapping of Aedes aegypti (Diptera: Culicidae) with host odors in the laboratory. J Med Entomol 33:177–179

    Article  CAS  PubMed  Google Scholar 

  • McIver SB, McElligott PE (1989) Effects of release rates on the range of attraction of carbon dioxide to some southwestern Ontario mosquito species. J Am Mosq Control Assoc 5:6–9

    CAS  PubMed  Google Scholar 

  • Mclver SB (1968) Host preferences and discrimination by the mosquitoes Aedes aegypti and Culex tarsalis (Diptera: Culicidae). J Med Entomol 5:422–428

    Article  Google Scholar 

  • McMeniman CJ, Corfas RA, Matthews BJ, Ritchie SA, Vosshall LB (2014) Multimodal integration of carbon dioxide and other sensory cues drives mosquito attraction to humans. Cell 156:1060–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McPhatter L, Gerry AC (2017) Effect of CO2 concentration on mosquito collection rate using odor-baited suction traps. J Vector Ecol 42:44–50

    Article  PubMed  Google Scholar 

  • Meeraus WH, Armistead JS, Arias JR (2008) Field comparison of novel and gold standard traps for collecting Aedes albopictus in northern Virginia. J Am Mosq Control Assoc 24:244–248

    Article  PubMed  Google Scholar 

  • Meijerink J, Braks MAH, Brack AA et al (2000) Identification of olfactory stimulants for Anopheles gambiae from human sweat samples. J Chem Ecol 26:1367–1382

    Article  CAS  Google Scholar 

  • Meijerink J, Braks M, Van Loon J (2001) Olfactory receptors on the antennae of the malaria mosquito Anopheles gambiae are sensitive to ammonia and other sweat-borne components. J Insect Physiol 47:455–464

    Article  CAS  PubMed  Google Scholar 

  • Meijerink J, van Loon JJ (1999) Sensitivities of antennal olfactory neurons of the malaria mosquito, Anopheles gambiae, to carboxylic acids. J Insect Physiol 45:365–373

    Article  CAS  PubMed  Google Scholar 

  • Melo N, Wolff GH, Costa-da-Silva AL et al (2020) Geosmin Attracts Aedes aegypti Mosquitoes to Oviposition Sites. Curr Biol 30:127–134

    Article  CAS  PubMed  Google Scholar 

  • Menger DJ, Omusula P, Holdinga M et al (2015) Field evaluation of a push-pull system to reduce malaria transmission. PLoS One 10:e0123415

    Article  PubMed  PubMed Central  Google Scholar 

  • Menger DJ, Otieno B, de Rijk M, Mukabana WR, van Loon JJ, Takken W (2014a) A push-pull system to reduce house entry of malaria mosquitoes. Malar J 13:119

    Article  PubMed  PubMed Central  Google Scholar 

  • Menger DJ, van Loon JJ, Takken W (2014b) Assessing the efficacy of candidate mosquito repellents against the background of an attractive source that mimics a human host. Med Vet Entomol 28:407–413

    Article  CAS  PubMed  Google Scholar 

  • Mer G, Birnbaum D, Aioub A, Bachi R (1947) The attraction of mosquitoes by human beings. Statistical analysis of data. Parasitol 38:1–9

    Article  CAS  Google Scholar 

  • Meza FC, Roberts JM, Sobhy IS, Okumu FO, Tripet F, Bruce TJA (2020) Behavioural and electrophysiological responses of female Anopheles gambiae mosquitoes to volatiles from a Mango bait. J Chem Ecol 46:387–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michael E, Ramaiah KD, Hoti SL et al (2001) Quantifying mosquito biting patterns on humans by DNA fingerprinting of bloodmeals. Am J trop Med Hygiene 65:722–728

    Article  CAS  Google Scholar 

  • Michalet S, Minard G, Chevalier W et al (2019) Identification of human skin bacteria attractive to the Asian Tiger mosquito. Environ Microbiol 21:4662–4674

    Article  CAS  PubMed  Google Scholar 

  • Millar JG, Chaney JD, Mulla MS (1992) Identification of oviposition attractants for Culex quinquefasciatus from fermented Bermuda grass infusions. J Am Mosq Control Assoc 8:11–17

    CAS  PubMed  Google Scholar 

  • Montagna W (1985) The anatomy of sweat glands. J Human Evol 14:3–22

    Article  Google Scholar 

  • Mozūraitis R, Hajkazemian M, Zawada JW et al (2020) Male swarming aggregation pheromones increase female attraction and mating success among multiple African malaria vector mosquito species. Nature Ecol Evol 4:1395–1401

    Article  Google Scholar 

  • Muirhead-Thomson R (1951a) Distribution of anopheline mosquito bites among different age groups. British Med J 1:1114

    Article  CAS  Google Scholar 

  • Muirhead-Thomson RC (1951b) Mosquito behaviour in relation to malaria transmission and control in the tropics. Arnold, London

    Google Scholar 

  • Mukabana WR, Mweresa CK, Omusula P, Orindi BO, Smallegange RC, van Loon JJ, Takken W (2012a) Evaluation of low density polyethylene and nylon for delivery of synthetic mosquito attractants. Parasites Vectors 5:202

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukabana WR, Mweresa CK, Otieno B, Omusula P, Smallegange RC, Van Loon JJ, Takken W (2012b) A novel synthetic odorant blend for trapping of malaria and other African mosquito species. J Chem Ecol 38:235–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukabana WR, Takken W, Killeen GF, Knols BG (2004) Allomonal effect of breath contributes to differential attractiveness of humans to the African malaria vector Anopheles gambiae. Malar J 3(1)

  • Mullens BA, Gerry AC (1998) Comparison of bait cattle and carbon dioxide-baited suction traps for collecting Culicoides variipennis sonorensis (Diptera: Ceratopogonidae) and Culex quinquefasciatus Diptera: Culicidae. J Med Entomol 35:245–250

    Article  CAS  PubMed  Google Scholar 

  • Müller GC, Beier JC, Traore SF et al (2010) Field experiments of Anopheles gambiae attraction to local fruits/seedpods and flowering plants in Mali to optimize strategies for malaria vector control in Africa using attractive toxic sugar bait methods. Malar J 9:262

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller W (1968) Die Distanz-und Kontakt-Orientierung der Stechmücken (Aedes aegypti) (Wirtsfindung, Stechverhalten und Blutmahlzeit). Zeit Ver Physiol 58:241–303

    Article  Google Scholar 

  • Murphy MW, Dunton RF, Perich MJ, Rowley WA (2001) Attraction of Anopheles (Diptera: culicidae) to volatile chemicals in Western Kenya. J Med Entomol 38:242–244

    Article  CAS  PubMed  Google Scholar 

  • Mweresa CK, Mukabana W, van Loon J, Dicke M, Takken W (2020) Use of semiochemicals for surveillance and control of hematophagous insects. Chemoecology 30:1–10

    Article  Google Scholar 

  • Mweresa CK, Mukabana WR, Omusula P, Otieno B, Van Loon JJ, Takken W (2016) Enhancing attraction of African malaria vectors to a synthetic odor blend. J Chem Ecol 42:508–516

    Article  CAS  PubMed  Google Scholar 

  • Mweresa CK, Omusula P, Otieno B, Van Loon JJ, Takken W, Mukabana WR (2014) Molasses as a source of carbon dioxide for attracting the malaria mosquitoes Anopheles gambiae and Anopheles funestus. Malar J 13:160

    Article  PubMed  PubMed Central  Google Scholar 

  • Mweresa CK, Otieno B, Omusula P et al (2015) Understanding the long-lasting attraction of malaria mosquitoes to odor baits. PLoS One 10:e0121533

    Article  PubMed  PubMed Central  Google Scholar 

  • Mwingira V, Mboera LE, Dicke M, Takken W (2020) Exploiting the chemical ecology of mosquito oviposition behavior in mosquito surveillance and control: a review. J Vector Ecol 45:155–179

    Article  PubMed  Google Scholar 

  • Newhouse VF, Chamberlain R, Johnston J, Sudia WD (1966) Use of dry ice to increase mosquito catches of the CDC miniature light trap. Mosq News 26:30–35

    Google Scholar 

  • Nicolaides N, Fu HC, Rice GR (1968) The skin surface lipids of man compared with those of eighteen species of animals. J Inv Dermatol 51:83–89

    Article  CAS  Google Scholar 

  • Nikbakhtzadeh MR, Terbot JW, Otienoburu PE, Foster WA (2014) Olfactory basis of floral preference of the malaria vector Anopheles gambiae (Diptera: Culicidae) among common African plants. J Vector Ecol 39:372–383

    Article  PubMed  Google Scholar 

  • Njiru BN, Mukabana WR, Takken W, Knols BG (2006) Trapping of the malaria vector Anopheles gambiae with odour-baited MM-X traps in semi-field conditions in western Kenya. Malar J 5:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Norris EJ, Coats JR (2017) Current and future Repellent technologies: the potential of spatial repellents and their place in mosquito-borne disease control. Int J Environ Res Public Health 14

  • Nyasembe VO, Tchouassi DP, Mbogo CM, Sole CL, Pirk C, Torto B (2015) Linalool oxide: generalist plant based lure for mosquito disease vectors. Parasites Vectors 8:1–8

    Article  Google Scholar 

  • Nyasembe VO, Teal PE, Mukabana WR, Tumlinson JH, Torto B (2012) Behavioural response of the malaria vector Anopheles gambiae to host plant volatiles and synthetic blends. Parasites Vectors 5:234

    Article  PubMed  PubMed Central  Google Scholar 

  • Nyasembe VO, Torto B (2014) Volatile phytochemicals as mosquito semiochemicals. Phytochem Lett 8:196–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obenauer PJ, Abdel-Dayem MS, Stoops CA et al (2013) Field responses of Anopheles gambiae complex (Diptera: Culicidae) in Liberia using yeast-generated carbon dioxide and synthetic lure-baited light traps. J Med Entomol 50:863–870

    Article  CAS  PubMed  Google Scholar 

  • Okumu F, Biswaro L, Mbeleyela E, Killeen GF, Mukabana R, Moore SJ (2010a) Using nylon strips to dispense mosquito attractants for sampling the malaria vector Anopheles gambiae s. J Med Entomol 47:274–282

    Article  CAS  PubMed  Google Scholar 

  • Okumu FO, Killeen GF, Ogoma S et al (2010b) Development and field evaluation of a synthetic mosquito lure that is more attractive than humans. PloS one 5:e8951

    Article  PubMed  PubMed Central  Google Scholar 

  • Olagbemiro TO, Birkett MA, Mordue AJ, Pickett JA (2004) Laboratory and field responses of the mosquito, Culex quinquefasciatus, to plant-derived Culex spp. oviposition pheromone and the oviposition cue skatole. J Chem Ecol 30:965–976

    Article  PubMed  Google Scholar 

  • Olanga EA, Okal MN, Mbadi PA, Kokwaro ED, Mukabana WR (2010) Attraction of Anopheles gambiae to odour baits augmented with heat and moisture. Malar J 9(6)

  • Oli K, Jeffery J, Vythilingam I (2005) Research note: a comparative study of adult mosquito trapping using dry ice and yeast generated carbon dioxide. Trop Biomed 22:249–251

    CAS  PubMed  Google Scholar 

  • Omer S (1979) Responses of females of Anopheles arabiensis and Culex pipiens fatigans to air currents, carbon dioxide and human hands in a flight-tunnel. Entomol Exp Appl 26:142–151

    Article  Google Scholar 

  • Omolo M, Njiru B, Ndiege I, Musau R, Hassanali A (2013) Differential attractiveness of human foot odours to Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) and variation in their chemical composition. Acta Trop 128:144–148

    Article  CAS  PubMed  Google Scholar 

  • Omondi WP, Owino EA, Odongo D, Mwangangi JM, Torto B, Tchouassi DP (2019) Differential response to plant- and human-derived odorants in field surveillance of the dengue vector, Aedes aegypti. Acta Trop 200:105163

    Article  CAS  PubMed  Google Scholar 

  • Omrani S-M, Vatandoost H, Oshaghi M-A, Rahimi A (2012) Upwind responses of Anopheles stephensi to carbon dioxide and L-lactic acid: an olfactometer study. East Mediter Health J 18:1134–1142

    Article  CAS  Google Scholar 

  • Omrani S-M, Vatandoost H, Oshaghi MA et al (2010) Fabrication of an olfactometer for mosquito behavioural studies. J Vector Borne Dis 47:17–25

    PubMed  Google Scholar 

  • Ortega-Morales AI, Méndez-López R, Garza-Hernández JA et al (2019) The mosquitoes (Diptera: Culicidae) of Tabasco, Mexico. J Vector Ecol 44:57–67

    Article  PubMed  Google Scholar 

  • Ortiz DG, Borges DA, Trinca LA, Eunice A, Gordon U, Geier M, Pinto MC (2020) Comparison of BG-Lure and BG-Sweetscents attractants for field sampling of phlebotomine sand flies. Acta Trop 202:105224

    Article  CAS  PubMed  Google Scholar 

  • Otienoburu PE, Ebrahimi B, Phelan PL, Foster WA (2012) Analysis and optimization of a synthetic milkweed floral attractant for mosquitoes. J Chem Ecol 38:873–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otienoburu PE, Nikbakhtzadeh MR, Foster WA (2016) Orientation of Anopheles gambiae (Diptera: Culicidae) to plant-host volatiles in a novel diffusion-cage olfactometer. J Med Entomol 53:237–240

    Article  PubMed  Google Scholar 

  • Owino EA, Sang R, Sole CL, Pirk C, Mbogo C, Torto B (2014) Field evaluation of natural human odours and the biogent-synthetic lure in trapping Aedes aegypti, vector of dengue and chikungunya viruses in Kenya. Parasites Vectors 7:451

    Article  PubMed  PubMed Central  Google Scholar 

  • Owino EA, Sang R, Sole CL, Pirk C, Mbogo C, Torto B (2015) An improved odor bait for monitoring populations of Aedes aegypti-vectors of dengue and chikungunya viruses in Kenya. Parasites Vectors 8:253

    Article  PubMed  PubMed Central  Google Scholar 

  • Paiva MHS, Barbosa RMR, Santos SA, Silva NM, Paula MB, Ayres CFJ, Leal WS (2019) An unsettling explanation for the failure of skatole-baited ovitraps to capture Culex mosquitoes. Insect Sci 26:873–880

    Article  PubMed  Google Scholar 

  • Pappenberger B, Geier M, Boeckh J (1996) Responses of antennal olfactory receptors in the yellow fever mosquito Aedes aegypti to human body odours. In: Bock GR, Cardew G (eds) Olfaction in mosquito-host interactions, Ciba Foundation Symposia. John Wiley and Sons, New York, pp 254–266

    Google Scholar 

  • Parker AH (1948) Stimuli involved in the attraction of Aedes aegypti, L., to man. Bull Entomol Res 39:387–397

    Article  CAS  PubMed  Google Scholar 

  • Paskewitz S, Irwin P, Konwinski N, Larson S (2018) Impact of consumption of bananas on attraction of Anopheles stephensi to humans. Insects 9:129

    Article  PubMed Central  Google Scholar 

  • Pates H, Takken W, Stuke K, Curtis C (2001) Differential behaviour of Anopheles gambiae sensu stricto (Diptera: Culicidae) to human and cow odours in the laboratory. Bull Entomol Res 91:289–296

    Article  CAS  PubMed  Google Scholar 

  • Paula AR, Silva LE, Ribeiro A, Butt TM, Silva CP, Samuels RI (2018) Improving the delivery and efficiency of fungus-impregnated cloths for control of adult Aedes aegypti using a synthetic attractive lure. Parasites Vectors 11:1–9

    Article  Google Scholar 

  • Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D (2009) Aedes albopictus, an arbovirus vector: from the darkness to the light. Microb Infect 11:1177–1185

    Article  CAS  Google Scholar 

  • Peach DA, Gries R, Young N et al (2019a) Attraction of Female Aedes aegypti (L.) to Aphid Honeydew. Insects 10(43)

  • Peach DA, Gries R, Zhai H, Young N, Gries G (2019b) Multimodal floral cues guide mosquitoes to tansy inflorescences. Sci Rep 9:1–10

    Google Scholar 

  • Pezzin A, Sy V, Puggioli A, Veronesi R, Carrieri M, Maccagnani B, Bellini R (2016) Comparative study on the effectiveness of different mosquito traps in arbovirus surveillance with a focus on WNV detection. Acta Trop 153:93–100

    Article  PubMed  Google Scholar 

  • Philippe-Janon JC, van den Hurk AF, Francis DP, Shivas MA, Jansen CC (2015) Field comparison of cyclopentanone versus carbon dioxide as an attractant for adult mosquitoes in Southeast Queensland, Australia. J Med Entomol 52:483–490

    Article  CAS  PubMed  Google Scholar 

  • Pitts RJ, Mozūraitis R, Gauvin-Bialecki A, Lempérière G (2014) The roles of kairomones, synomones and pheromones in the chemically-mediated behaviour of male mosquitoes. Acta Trop 132:S26–S34

    Article  CAS  PubMed  Google Scholar 

  • Plimmer J, Inscoe M, McGovern T (1982) Insect attractants. Annu Rev Pharmacol Toxicol 22:297–320

    Article  CAS  PubMed  Google Scholar 

  • Pombi M, Jacobs F, Verhulst NO, Caputo B, della Torre A, Takken W (2014) Field evaluation of a novel synthetic odour blend and of the synergistic role of carbon dioxide for sampling host-seeking Aedes albopictus adults in Rome, Italy. Parasites Vectors 7:580

    Article  PubMed  PubMed Central  Google Scholar 

  • Ponlawat A, Khongtak P, Jaichapor B, Pongsiri A, Evans BP (2017) Field evaluation of two commercial mosquito traps baited with different attractants and colored lights for malaria vector surveillance in Thailand. Parasites Vectors 10:378

    Article  PubMed  PubMed Central  Google Scholar 

  • Ponnusamy L, Xu N, Böröczky K, Wesson DM, Ayyash LA, Schal C, Apperson CS (2010) Oviposition responses of the mosquitoes Aedes aegypti and Aedes albopictus to experimental plant infusions in laboratory bioassays. J Chem Ecol 36:709–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponnusamy L, Xu N, Nojima S, Wesson DM, Schal C, Apperson CS (2008) Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti. Proc Natl Acad Sci 105:9262–9267

    Article  CAS  PubMed  Google Scholar 

  • Price GD, Smith N, Carlson DA (1979) The attraction of female mosquitoes (Anopheles quadrimaculatus Say) to stored human emanations in conjunction with adjusted levels of relative humidity, temperature, and carbon dioxide. J Chem Ecol 5:383–395

    Article  CAS  Google Scholar 

  • Proffit M, Lapeyre B, Buatois B et al (2020) Chemical signal is in the blend: bases of plant-pollinator encounter in a highly specialized interaction. Sci Rep 10:1–11

    Google Scholar 

  • Puri SN, Mendki MJ, Sukumaran D, Ganesan K, Prakash S, Sekhar K (2006) Electroantennogram and behavioral responses of Culex quinquefasciatus (Diptera: Culicidae) females to chemicals found in human skin emanations. J Med Entomol 43:207–213

    Article  PubMed  Google Scholar 

  • Qiu Y, Smallegange R, Van Loon J, Takken W (2011) Behavioural responses of Anopheles gambiae sensu stricto to components of human breath, sweat and urine depend on mixture composition and concentration. Med Vet Entomol 25:247–255

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y, Smallegange R, Van Loon J, Ter Braak C, Takken W (2006a) Interindividual variation in the attractiveness of human odours to the malaria mosquito Anopheles gambiae ss. Med Vet Entomol 20:280–287

    Article  CAS  PubMed  Google Scholar 

  • Qiu YT, Smallegange RC, Smid HM et al (2004) GC-EAG analysis of human odours that attract the malaria mosquito Anopheles gambiae sensu stricto. Proc Netherlands Entomol Soc Meeting 15:59–64

    Google Scholar 

  • Qiu YT, Smallegange RC, Van Loon JJ, Ter Braak CJ, Takken W (2006b) Interindividual variation in the attractiveness of human odours to the malaria mosquito Anopheles gambiae s. Med Vet Entomol 20:280–287

    Article  CAS  PubMed  Google Scholar 

  • Qualls WA, Mullen GR (2007) Evaluation of the Mosquito Magnet ProTM trap with and without 1-octen-3-ol for collecting Aedes albopictus and other urban mosquitoes. J Am Mosq Control Assoc 23:131–136

    Article  CAS  PubMed  Google Scholar 

  • Raji JI, Melo N, Castillo JS, Gonzalez S, Saldana V, Stensmyr MC, DeGennaro M (2019) Aedes aegypti mosquitoes detect acidic volatiles found in human odor using the IR8a pathway. Curr Biol 29:1253–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramoni R, Vincent F, Grolli S et al (2001) The insect attractant 1-octen-3-ol is the natural ligand of bovine odorant-binding protein. J Biol Chem 276:7150–7155

    Article  CAS  PubMed  Google Scholar 

  • Reeves W (1951) Field studies on carbon dioxide as a possible host simulant to mosquitoes. Proc Soc Exp Biol Med 77:64–66

    Article  CAS  PubMed  Google Scholar 

  • Reeves W (1953) Quantitative field studies on a carbon dioxide chemotropism of mosquitoes. Am J Trop Med Hygiene 2:325–331

    Article  CAS  Google Scholar 

  • Reiter P, Colon M (1991) Enhancement of the CDC ovitrap with hay infusions for daily monitoring of Aedes aegypti populations. J Am Mosq Control Assoc 7:52–55

    CAS  PubMed  Google Scholar 

  • Resende MC, TMFd Á, Costa IO, Heringer LC, MRd A, Acebal JL, Eiras ÁE (2012) Field optimisation of MosquiTRAP sampling for monitoring Aedes aegypti Linnaeus (Diptera: Culicidae). Mem Inst Oswaldo Cruz 107:294–302

    Article  PubMed  Google Scholar 

  • Resende MC, IMd S, Eiras ÁE (2010) Avaliação da operacionalidade da armadilha MosquiTRAP no monitoramento de Aedes aegypti. Epidemiologia e Serviços de Saúde 19:329–338

    Article  Google Scholar 

  • Reuter J (1936) Oriënteerend onderzoek naar de oorzaak van het gedrag van Anopheles maculipennis Meigen bij de voedselkeuze, . Luctor et Emergo, Dissertation. University of Leiden, Leiden 118pp

    Google Scholar 

  • Ribbands C (1949) Studies on the attractiveness of human populations to anophelines. Bull Entomol Res 40:227–238

    Article  CAS  PubMed  Google Scholar 

  • Robinson A, Busula AO, Voets MA et al (2018) Plasmodium-associated changes in human odor attract mosquitoes. Proc Natl Acad Sci 115:E4209–E4218

    Article  CAS  PubMed  Google Scholar 

  • Rochlin I, Kawalkowski M, Ninivaggi DV (2016) Comparison of Mosquito Magnet and Biogents Sentinel traps for operational surveillance of container-inhabiting Aedes (Diptera: Culicidae) species. J Med Entomol 53:454–459

    Article  PubMed  Google Scholar 

  • Roiz D, Duperier S, Roussel M, Boussès P, Fontenille D, Simard F, Paupy C (2016) Trapping the Tiger: efficacy of the novel BG-Sentinel 2 with several attractants and carbon dioxide for collecting Aedes albopictus (Diptera: Culicidae) in Southern France. J Med Entomol 53:460–465

    Article  CAS  PubMed  Google Scholar 

  • Roque RA, Eiras ÁE (2008) Calibration and evaluation of field cage for oviposition study with Aedes (Stegomyia) aegypti female (L.)(Diptera: Culicidae). Neotrop Entomol 37:478–485

    Article  PubMed  Google Scholar 

  • Rose A, Kröckel U, Bergbauer R, Geier M, Eiras ÁE (2006) Der BG-sentinel, eine neuartige stechmückenfalle für forschung und überwachung. Mitt Dtsch Ges Allg Angew Entomol 15:345–348

    Google Scholar 

  • Rössler ME (1961) Ernährungsphysiologische Untersuchungen an Scarabaeidenlarven (Oryctes nasicornis L., Melolontha melolontha L.). J Insect Physiol 6:62–80

  • Rubio-Palis Y (1996) Evaluation of light traps combined with carbon dioxide and 1-octen-3-ol to collect anophelines in Venezuela. J Am Mosq Control Assoc 12(91)

  • Rudolfs W (1922) Chemotropism of mosquitoes. Bull New Jersey Agric Exp Stn 367:4–23

    Google Scholar 

  • Rueda LM, Harrison BA, Brown JS, Whitt PB, Harrison RL, Gardner RC (2001) Evaluation of 1-octen-3-ol, carbon dioxide, and light as attractants for mosquitoes associated with two distinct habitats in North Carolina. J Am Mosq Control Assoc -Mosq News 17:61–66

    CAS  Google Scholar 

  • Russell RC (2004) The relative attractiveness of carbon dioxide and octenol in CDC-and EVS-type light traps for sampling the mosquitoes Aedes aegypti (L.), Aedes polynesiensis Marks, and Culex quinquefasciatus Say in Moorea, French Polynesia. J Vector Ecol 29:309

    PubMed  Google Scholar 

  • Saitoh Y, Hattori J, Chinone S, Nihei N, Tsuda Y, Kurahashi H, Kobayashi M (2004) Yeast-generated CO2 as a convenient source of carbon dioxide for adult mosquito sampling. J Am Mosq Control Assoc 20:261–264

    PubMed  Google Scholar 

  • Saratha R, Mathew N (2016) Development of a mosquito attractant blend of small molecules against host-seeking Aedes aegypti. Parasitol Res 115:1529–1536

    Article  CAS  PubMed  Google Scholar 

  • Schaerffenberg B, Kupka E (1959) Der attractive factor des blutes fur blutsagende insekten. Naturwiss 46:457–458

    Article  Google Scholar 

  • Schmied WH, Takken W, Killeen GF, Knols BG, Smallegange RC (2008) Evaluation of two counterflow traps for testing behaviour-mediating compounds for the malaria vector Anopheles gambiae s.s. under semi-field conditions in Tanzania. Malar J 7:230

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoelitsz B, Mwingira V, Mboera LEG et al (2020) Chemical mediation of oviposition by Anopheles mosquitoes: a push-pull system driven by volatiles associated with larval stages. J Chem Ecol 46:397–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreck C, James J (1968) Broth cultures of bacteria that attract female mosquitoes. Mosq News 28

  • Schreck C, Kline D, Carlson D (1990) Mosquito attraction to substances from the skin of different humans. J Am Mosq Control Assoc 6:406–410

    CAS  PubMed  Google Scholar 

  • Schreck C, Smith N, Carlson D, Price G, Haile D, Godwin D (1982) A material isolated from human hands that attracts female mosquitoes. J Chem Ecol 8:429–438

    Article  CAS  PubMed  Google Scholar 

  • Scott-Fiorenzano JM, Fulcher AP, Seeger KE et al (2017) Evaluations of dual attractant toxic sugar baits for surveillance and control of Aedes aegypti and Aedes albopictus in Florida. Parasites Vectors 10:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Scott JJ, Crans SC, Crans WJ (2001) Use of an infusion-baited gravid trap to collect adult Ochlerotatus japonicus. J Am Mosq Control Assoc 17:142

    CAS  PubMed  Google Scholar 

  • Scott TW, Githeko AK, Fleisher A, Harrington LC, Yan G (2006) DNA profiling of human blood in anophelines from lowland and highland sites in western Kenya. Am J Trop Med Hygiene 75:231–237

    Article  CAS  Google Scholar 

  • Seenivasagan T, Guha L, Parashar B, Agrawal O, Sukumaran D (2014) Olfaction in Asian tiger mosquito Aedes albopictus: flight orientation response to certain saturated carboxylic acids in human skin emanations. Parasitol res 113:1927–1932

    Article  CAS  PubMed  Google Scholar 

  • Seenivasagan T, Sharma KR, Prakash S (2012) Electroantennogram, flight orientation and oviposition responses of Anopheles stephensi and Aedes aegypti to a fatty acid ester-propyl octadecanoate. Acta Trop 124:54–61

    Article  CAS  PubMed  Google Scholar 

  • Seenivasagan T, Sharma KR, Sekhar K, Ganesan K, Prakash S, Vijayaraghavan R (2009) Electroantennogram, flight orientation, and oviposition responses of Aedes aegypti to the oviposition pheromone n-heneicosane. Parasitol Res 104:827–833

    Article  CAS  PubMed  Google Scholar 

  • Sharma KR, Seenivasagan T, Rao A, Ganesan K, Agarwal O, Malhotra R, Prakash S (2008) Oviposition responses of Aedes aegypti and Aedes albopictus to certain fatty acid esters. Parasitol Res 103:1065–1073

    Article  PubMed  Google Scholar 

  • Sharma KR, Seenivasagan T, Rao A, Ganesan K, Agrawal O, Prakash S (2009) Mediation of oviposition responses in the malaria mosquito Anopheles stephensi Liston by certain fatty acid esters. Parasitol Res 104:281–286

    Article  PubMed  Google Scholar 

  • Shelley WB, Hurley HJ, Nichols AC (1953) Axillary odor: experimental study of the role of bacteria, apocrine sweat, and deodorants. Am Arch Dermatol Syphilol 68:430–446

    Article  CAS  Google Scholar 

  • Shirai Y, Kamimura K, Seki T, Morohashi M (2001) L-lactic acid as a mosquito (Diptera: Culicidae) repellent on human and mouse skin. J Med Entomol 38:51–54

    Article  CAS  PubMed  Google Scholar 

  • Shone SM, Ferrao PN, Lesser CR, Glass GE, Norris DE (2003) Evaluation of carbon dioxide -and 1-octen-3-ol- baited Centers for Disease Control Fay–Prince traps to collect Aedes albopictus. J Am Mosq Control Assoc 19:445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva IM, Eiras ÁE, Kline DL, Bernier UR (2005) Laboratory evaluation of mosquito traps baited with a synthetic human odor blend to capture Aedes aegypti. J Am Mosq Control Assoc 21:229–233

    Article  PubMed  Google Scholar 

  • Sivakumar R, Jebanesan A, Govindarajan M, Rajasekar P (2011) Oviposition attractancy of dodecanoic, hexadecanoic and tetradecanoic acids against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Eur Rev Med Pharmacol Sci 15:1172–1175

    CAS  PubMed  Google Scholar 

  • Skinner W, Tong H, Johnson H, Maibach H, Skidmore D (1968) Human sweat components—attractancy and repellency to mosquitoes. Experientia 24:679–680

    Article  CAS  PubMed  Google Scholar 

  • Smallegange R, Geier M, Takken W (2002) Behavioural responses of Anopheles gambiae to ammonia, lactic acid and a fatty acid in a y-tube olfactometer. Proc Exp Appl Entomol 13:147–152

    Google Scholar 

  • Smallegange R, Qiu YT, Galimard A, Posthumus M, Van Beek T, van Loon J, Takken W (2003) Why humans are attractive to malaria mosquitoes. Entomol Bericht 63:50-53

  • Smallegange RC, Bukovinszkine-Kiss G, Otieno B, Mbadi PA, Takken W, Mukabana WR, Van Loon JJ (2012) Identification of candidate volatiles that affect the behavioural response of the malaria mosquito Anopheles gambiae sensu stricto to an active kairomone blend: laboratory and semi-field assays. Physiol Entomol 37:60–71

    Article  CAS  Google Scholar 

  • Smallegange RC, Qiu YT, Bukovinszkine-Kiss G, Van Loon JJ, Takken W (2009) The effect of aliphatic carboxylic acids on olfaction-based host-seekin