Transcriptomics Reveal the Survival Strategies of Enterococcus mundtii in the Gut of Spodoptera littoralis

Abstract

The complex interaction between a higher organism and its resident gut flora is a subject of immense interest in the field of symbiosis. Many insects harbor a complex community of microorganisms in their gut. Larvae of Spodoptera littoralis, a lepidopteran pest, house a bacterial community that varies both spatially (along the length of the gut) and temporally (during the insect’s life cycle). To monitor the rapid adaptation of microbes to conditions in the gut, a GFP-tagged reporter strain of E. mundtii, a major player in the gut community, was constructed. After early-instar S. littoralis larvae were fed with the tagged microbes, these were recovered from the larval fore- and hindgut by flow cytometry. The fluorescent reporter confirmed the persistence of E. mundtii in the gut. RNA-sequencing of the sorted bacteria highlighted various strategies of the symbiont’s survival, including upregulated pathways for tolerating alkaline stress, forming biofilms and two-component signaling systems for quorum sensing, and resisting oxidative stress. Although these symbionts depend on the host for amino acid and fatty acids, differential regulation among various metabolic pathways points to an enriched lysine synthesis pathway of E. mundtii in the hindgut of the larvae.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ageno M, Dore E, Frontali C (1969) The alkaline denaturation of DNA. Biophys J 9:1281–1311

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Anzaldi LL, Skaar EP (2010) Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens. Infect Immun 78:4977–4989

  3. Balaji S, Krishnan MV (2008) In Silico analysis of Alkaline Shock proteins in Enterobacteria. J Proteome & Bioinformatics 2:21–37

  4. Boekhorst J, Wels M, Kleerebezem M, Siezen RJ (2006) The predicted secretome of lactobacillus plantarum WCFS1 sheds light on interactions with its environment. Microbiology 152:3175–3183

    CAS  PubMed  Article  Google Scholar 

  5. Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G (2004) GO::TermFinder—open source software for accessing gene ontology information and finding significantly enriched gene ontology terms associated with a list of genes. Bioinformatics 20:3710–3715

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Brinster S, Furlan S, Serror P (2007) C-terminal WxL domain mediates cell wall binding in Enterococcus faecalis and other gram-positive bacteria. J Bacteriol 189:1244–1253

    CAS  PubMed  Article  Google Scholar 

  7. Campbell PM, Cao AT, Hines ER, East PD, Gordon KH (2008) Proteomic analysis of the peritrophic matrix from the gut of the caterpillar, Helicoverpa armigera. Insect Biochem Mol Biol 38:950–958

    CAS  PubMed  Article  Google Scholar 

  8. Cvitkovitch DG, Li Y-H, Ellen RP (2003) Quorum sensing and biofilm formation in streptococcal infections. J Clin Invest 112:1626–1632

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92

    CAS  PubMed  Article  Google Scholar 

  10. Engel P, Moran NA (2013) The gut microbiota of insects–diversity in structure and function. FEMS Microbiol Rev 37:699–735

    CAS  PubMed  Article  Google Scholar 

  11. Funke M, Buchler R, Mahobia V, Schneeberg A, Ramm M, Boland W (2008) Rapid hydrolysis of quorum-sensing molecules in the gut of lepidopteran larvae. Chembiochem 9:1953–1959

    CAS  PubMed  Article  Google Scholar 

  12. González-Serrano F, Pérez-Cobas AE, Rosas T, Baixeras J, Latorre A, Moya A (2019) The gut microbiota composition of the mothBrithys crini reflects insect metamorphosis. Microb Ecol 79:960–970

  13. Grau T, Vilcinskas A, Joop G (2017) Probiotic Enterococcus mundtii isolate protects the model insect Tribolium castaneum against Bacillus thuringiensis. Front Microbiol 8:1261

    PubMed  PubMed Central  Article  Google Scholar 

  14. Haas H (2012) Iron–a key nexus in the virulence of Aspergillus fumigatus. Front Microbiol 3:28

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Hanchi H, Mottawea W, Sebei K, Hammami R (2018) The genus Enterococcus: Between probiotic potential and safety concerns—Anupdate. Front Microbiol 9:1791

  16. Hancock, L.E., Murray, B.E., and Sillanpaa, J. (2014). "Enterococcal cell wall components and structures," in Enterococci: From Commensals to Leading Causes of Drug Resistant Infection [Internet]. Massachusetts Eye and Ear Infirmary

  17. Ho TD, Ellermeier CD (2015) Ferric uptake regulator fur control of putative iron acquisition systems in Clostridium difficile. J Bacteriol 197:2930–2940

  18. Ishag HZ, Xiong Q, Liu M, Feng Z, Shao G (2017) E. coli recA gene improves gene targeted homologous recombination in mycoplasma hyorhinis. J Microbiol Methods 136:49–56

    CAS  PubMed  Article  Google Scholar 

  19. Ivanov EL, Haber JE (1997) DNA repair: RAD alert. Curr Biol 7:R492–R495

    CAS  PubMed  Article  Google Scholar 

  20. Johnson KS, Barbehenn RV (2000) Oxygen levels in the gut lumens of herbivorous insects. J Insect Physiol 46:897–903

  21. Johnston PR, Rolff JJPP (2015) Host and symbiont jointly control gut microbiota during complete metamorphosis. PLoS Pathog 11:e1005246

  22. Kim H, Goo E, Kang Y, Kim J, Hwang I (2012) Regulation of universal stress protein genes by quorum sensing and RpoS in Burkholderia glumae. J Bacteriol 194:982–992

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Kotrba P, Inui M, Yukawa H (2001) Bacterial phosphotransferase system (PTS) in carbohydrate uptake and control of carbon metabolism. J Biosci Bioeng 92:502–517

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. Kurasz JE, Hartman CE, Samuels DJ, Mohanty BK, Deleveaux A, Mrázek J, Karls AC (2018) Genotoxic, metabolic, and oxidativestresses regulate the RNA repair operon of Salmonella enterica Serovar Typhimurium. J Bacteriol 200:e00476–e00418

  25. Kuroda M, Ohta T, Hayashi H (1995) Isolation and the gene cloning of an alkaline shock protein in methicillin-resistant Staphylococcus aureus. Biochem Biophys Res Commun 207:978–984

  26. Le KY, Otto M (2015) Quorum-sensing regulation in staphylococci—an overview. Front Microbiol 6:1174

    PubMed  PubMed Central  Article  Google Scholar 

  27. Lee JB, Byeon JH, Jang HA, Kim JK, Yoo JW, Kikuchi Y, Lee BL (2015) Bacterial cell motility of Burkholderia gut symbiont is required to colonize the insect gut. FEBS Lett 589:2784–2790

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. Maffei M, Bossi S, Spiteller D, Mithofer A, Boland W (2004) Effects of feeding Spodoptera littoralis on lima bean leaves. I. Membrane potentials, intracellular calcium variations, oral secretions, and regurgitate components. Plant Physiol 134:1752–1762

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Magni C, Espeche C, Repizo GD, Saavedra L, Suarez CA, Blancato VS, Espariz M, Esteban L, Raya RR, Font De Valdez G, Vignolo G, Mozzi F, Taranto MP, Hebert EM, Nader-Macias ME, Sesma F (2012) Draft genome sequence of Enterococcus mundtii CRL1656. J Bacteriol 194:550

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Martínez-Solís M, Collado MC, Herrero S (2020) Influence of diet, sex, and viral infections on the gut microbiota composition of Spodoptera exigua caterpillars. Front Microbiol 11:753

    PubMed  PubMed Central  Article  Google Scholar 

  31. Mason CJ, Raffa KF (2014) Acquisition and structuring of midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae. Environ Entomol 43:595–604

    PubMed  Article  Google Scholar 

  32. Mason CJ, St. Clair A, Peiffer M, Gomez E, Jones AG, Felton GW, Hoover K (2020) Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PLoS One 15:e0229848

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Mazumdar T, Teh BS, Murali A, Schmidt-Heck W, Schlenker Y, Vogel H, Boland W (2020) Survival strategies of Enterococcus mundtii in the gut of Spodoptera littoralis: a live report. bioRxiv. https://doi.org/10.1101/2020.02.03.932053

  34. Navarre WW, Schneewind O (1994) Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in gram-positive bacteria. Mol Microbiol 14:115–121

    CAS  PubMed  Article  Google Scholar 

  35. Nyström T, Neidhardt FC (1992) Cloning, mapping and nucleotide sequencing of a gene encoding a universal stress protein in Eschericha coli. Mol Microbiol 6:3187–3198

  36. Otto M (2014) Physical stress and bacterial colonization. FEMS Microbiol Rev 38:1250–1270

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Paes MC, Oliveira MB, Oliveira PL (2001) Hydrogen peroxide detoxification in the midgut of the blood-sucking insect, Rhodnius prolixus. Arch Insect Biochem Physiol 48:63–71

    CAS  PubMed  Article  Google Scholar 

  38. Paniagua Voirol LR, Frago E, Kaltenpoth M, Hilker M, Fatouros NE (2018) Bacterial symbionts in Lepidoptera: their diversity, transmission, and impact on the host. Front Microbiol 9:556

    PubMed  PubMed Central  Article  Google Scholar 

  39. Pavelka M, Jacobs WR (1996) Biosynthesis of diaminopimelate, the precursor of lysine and a component of peptidoglycan, is an essential function of Mycobacterium smegmatis. J Bacteriol 178:6496–6507

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Pesek J, Svoboda J, Sattler M, Bartram S, Boland W (2015) Biosynthesis of 8-hydroxyquinoline-2-carboxylic acid, an iron chelator from the gut of the lepidopteran Spodoptera littoralis. Org Biomol Chem 13:178–184

    CAS  PubMed  Article  Google Scholar 

  41. Porcheron G, Dozois CM (2015) Interplay between iron homeostasis and virulence: Fur and RyhB as major regulators of bacterial pathogenicity. Vet Microbiol 179:2–14

    CAS  PubMed  Article  Google Scholar 

  42. Powell JE, Leonard SP, Kwong WK, Engel P, Moran NA (2016) Genome-wide screen identifies host colonization determinants in a bacterial gut symbiont. Proc Natl Acad Sci 113:13887–13892

    CAS  PubMed  Article  Google Scholar 

  43. Ran S, Liu B, Jiang W, Sun Z, Liang J (2015) Transcriptome analysis of Enterococcus faecalis in response to alkaline stress. Front Microbiol 6:795

    PubMed  PubMed Central  Article  Google Scholar 

  44. Rao CVS, De Waelheyns E, Economou A, Anne J (2014) Antibiotic targeting of the bacterial secretory pathway. Biochim Biophys Acta 1843:1762–1783

    Article  CAS  Google Scholar 

  45. Restrepo AV, Salazar BE, Agudelo M, Rodriguez CA, Zuluaga AF, Vesga O (2005) Optimization of culture conditions to obtain maximal growth of penicillin-resistant Streptococcus pneumoniae. BMC Microbiol 5:34

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. Rozadilla G, Cabrera NA, Virla EG, Greco NM, Mccarthy CB (2020) Gut microbiota of Spodoptera frugiperda (JE Smith) larvae as revealed by metatranscriptomic analysis. J Appl Entomol 144:351–363

    CAS  Article  Google Scholar 

  47. Russell CW, Poliakov A, Haribal M, Jander G, Van Wijk KJ, Douglas AE (2014) Matching the supply of bacterial nutrients to the nutritional demand of the animal host. Proc R Soc B Biol Sci 281:20141163

    Article  Google Scholar 

  48. Sengupta R, Altermann E, Anderson RC, Mcnabb WC, Moughan PJ, Roy NC (2013) The role of cell surface architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract. Mediat Inflamm 2013:1–16

    Article  Google Scholar 

  49. Shao Y, Chen B, Sun C, Ishida K, Hertweck C, Boland W (2017) Symbiont-derived antimicrobials contribute to the control of the Lepidopteran gut microbiota. Cell Chem Biol 24:66–75

    CAS  PubMed  Article  Google Scholar 

  50. Shiwa Y, Yanase H, Hirose Y, Satomi S, Araya-Kojima T, Watanabe S, Zendo T, Chibazakura T, Shimizu-Kadota M, Yoshikawa H (2014) Complete genome sequence of Enterococcus mundtii QU 25, an efficient L-(+)-lactic acid-producing bacterium. DNA Res 21:369–377

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Sun Z, Kumar D, Cao G, Zhu L, Liu B, Zhu M, Liang Z, Kuang S, Chen F, Feng Y (2017) Effects of transient high temperature treatment on the intestinal flora of the silkworm Bombyx mori. Sci Rep 7:1–15

    Article  CAS  Google Scholar 

  52. Sund CJ, Rocha ER, Tzinabos AO, Wells WG, Gee JM, Reott MA, O'rourke DP, Smith CJ (2008) The Bacteroides fragilis transcriptome response to oxygen and H2O2: the role of OxyR and its effect on survival and virulence. Mol Microbiol 67:129–142

    CAS  PubMed  Article  Google Scholar 

  53. Tang X, Freitak D, Vogel H, Ping L, Shao Y, Cordero EA, Andersen G, Westermann M, Heckel DG, Boland W (2012) Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PLoS One 7:e36978

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Teh B-S, Apel J, Shao Y, Boland W (2016) Colonization of the intestinal tract of the polyphagous pest Spodoptera littoralis with the GFP-tagged indigenous gut bacterium Enterococcus mundtii. Front Microbiol 7:928

    PubMed  PubMed Central  Article  Google Scholar 

  55. Tellam RL, Wijffels G, Willadsen P (1999) Peritrophic matrix proteins. Insect Biochem Mol Biol 29:87–101

    CAS  PubMed  Article  Google Scholar 

  56. Tokuda G, Watanabe H (2007) Hidden cellulases in termites: revision of an old hypothesis. Biol Lett 3:336–339

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Tomusiak-Plebanek A, Heczko P, Skowron B, Baranowska A, Okoń K, Thor PJ, Strus M (2018) Lactobacilli with superoxide dismutase-like or catalase activity are more effective in alleviating inflammation in an inflammatory bowel disease mouse model. Drug Des Devel Ther 12:3221–3233

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Tran HT, Barnich N, Mizoguchi E (2011) Potential role of chitinases and chitin-binding proteins in host-microbial interactions during the development of intestinal inflammation. Histol Histopathol 26:1453

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc 7:562–578

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Ugwu JA, Liu M, Sun H, Asiegbu FO (2020) Microbiome of the larvae of Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae) from maize plants. J Appl Entomol 144:764–776

  61. Vermassen A, Leroy S, Talon R, Provot C, Popowska M, Desvaux MJFIM (2019) Cell wall hydrolases in bacteria: insight on the diversity of cell wall amidases, glycosidases and peptidases towards peptidoglycan. Front Microbiol 10:331

  62. Vogel-Scheel J, Alpert C, Engst W, Loh G, Blaut M (2010) Requirement of purine and pyrimidine synthesis for colonization of the mouse intestine by Escherichia coli. Appl Environ Microbiol 76:5181–5187

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Voronina OL, Kunda MS, Ryzhova NN, Aksenova EI, Semenov AN, Romanova YM, Gintsburg AL (2016) Burkholderia contaminans biofilm regulating operon and its distribution in bacterial genomes. Biomed Res Int 2016:6560534

  64. Wang X, Sun S, Yang X, Cheng J, Wei H, Li Z, Michaud J, Liu X (2020) Variability of gut microbiota across the life cycle of Grapholita molesta (Lepidoptera: Tortricidae). Front Microbiol 11:1366

    PubMed  PubMed Central  Article  Google Scholar 

  65. Wieczorek H, Beyenbach KW, Huss M, Vitavska O (2009) Vacuolar-type proton pumps in insect epithelia. J Exp Biol 212:1611–1619

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Yu G, Wang L-G, Han Y, He Q-Y (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. J Integr OMICS 16:284–287

  67. Zhang J, Zhang Y, Li J, Liu M, Liu Z (2016) Midgut transcriptome of the cockroach Periplaneta americana and its microbiota: digestion, detoxification and oxidative stress response. PloS one 11:e0155254

Download references

Acknowledgments

This work was funded by the Max Planck Society and Jena School for Microbial Communications. Also, we thank Angelika Berg and Andrea Lehr for technical assistance and Emily Wheeler, Boston, for editorial assistance. This manuscript has been released as a pre-print at BioRxiv (Mazumdar et al. 2020).

Funding

This work was funded by the Max Planck Society and the Jena School for Microbial Communications.

Author information

Affiliations

Authors

Contributions

TM, BT and AM conducted all the experiments under the supervision of WB. WS and YS collaborated for the Bioinformatics and the flow cytometry parts, respectively. WB and HV helped edit the manuscript.

Corresponding author

Correspondence to Wilhelm Boland.

Ethics declarations

Conflict of Interest

Authors BT and AM were PhD and master’s students, respectively, at the department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, during the time of the research. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supplementary Information

ESM 1

(DOCX 1522 kb)

ESM 2

(XLSX 948 kb)

ESM 3

(XLS 442 kb)

ESM 4

(XLS 84 kb)

ESM 5

(XLSX 45 kb)

ESM 6

(XLSX 45 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mazumdar, T., Teh, B.S., Murali, A. et al. Transcriptomics Reveal the Survival Strategies of Enterococcus mundtii in the Gut of Spodoptera littoralis. J Chem Ecol 47, 227–241 (2021). https://doi.org/10.1007/s10886-021-01246-1

Download citation

Keywords

  • Enterococcus mundtii
  • Spodoptera littoralis
  • Flow cytometry
  • Transcriptomics
  • Foregut
  • Hindgut