Courtship Behavior Confusion in Two Subterranean Termite Species that Evolved in Allopatry (Blattodea, Rhinotermitidae, Coptotermes)

Abstract

Congeneric species that live in sympatry may have evolved various mechanisms that maintain reproductive isolation among species. However, with the spread of invasive organisms owing to increased global human activity, some species that evolved in allopatry can now be found outside their native range and may have the opportunity to interact, in the absence of mechanisms for reproductive isolation. In South Florida, where the Asian subterranean termite, Coptotermes gestroi (Wamann), and the Formosan subterranean termite, Coptotermes formosanus Shiraki (Blattodea: Rhinotermitidae) are invasive, the two species can engage in heterospecific mating behavior as their distribution range and their dispersal flight season both overlap. Termites rely on semiochemicals for many of their activities, including finding a mate after a dispersal flight. In this study, we showed that females of both species produce (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol (DTE) from their tergal glands as a shared sex pheromone. We suggest that both species primarily rely on an inundative dispersal flight strategy to find a mate, and that DTE is used as a short distance pheromone or contact pheromone to initiate and maintain the tandem between males and females. The preference of C. gestroi males for C. formosanus females during tandem resulted from the relatively high amount of DTE produced by tergal glands of C. formosanus females, when compared with those of C. gestroi females. This results in confusion of mating in the field during simultaneous dispersal flights, with a potential for hybridization. Such observations imply that no prezygotic barriers emerged while the two species evolved in allopatry for ~18 Ma.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Aldrich BT, Kambhampati S (2009) Preliminary analysis of a hybrid zone between two subspecies of Zootermopsis nevadensis. Insect Soc 56:439–450

    Google Scholar 

  2. Bland JM, Park YI, Raina AK, Dickens JC, Hollister B (2004) Trilinolein identified as a sex-specific component of tergal glands in alates of Coptotermes formosanus. J Chem Ecol 30:835–849

    CAS  PubMed  Google Scholar 

  3. Bland JM, Raina AK, Carpita A, Dickens JC (2007) Comparative analysis of the sex/trail pheromone, 3, 6, 8-dodecatrien-1-ol, from three species of subterranean termites (Isoptera: Rhinotermitidae). Sociobiology 50:535–551

    Google Scholar 

  4. Bordereau C, Pasteels JM (2011) Pheromones and chemical ecology of dispersal and foraging in termites. In: Biology of termites: a modern synthesis. Springer, Dordrecht, pp 279–320

    Google Scholar 

  5. Bordereau C, Robert A, Laduguie N, Bonnard O, Le Quéré JL, Yamaoka R (1993) Détection du (Z,Z,E)-3, 6, 8-dodécatrién-1-ol par les ouvriers et les essaimants de deux espèces de termites champignonnistes: Pseudacanthotermes spiniger et P. militaris (Termitidae, Macrotermitinae). Actes Coll Inst Soc 8:145–149

  6. Bordereau C, Lacey MJ, Sémon E, Braekman JC, Ghostin J, Robert A, Sherman JS, Sillam-Dussès D (2010) Sex pheromones and trail-following pheromone in the basal termites Zootermopsis nevadensis (Hagen) and Z. angusticollis (Hagen) (Isoptera: Termopsidae: Termopsinae). Biol J Linn Soc 100:519–530

    Google Scholar 

  7. Bordereau C, Cancello EM, Sillam-Dussès D, Sémon E (2011) Sex-pairing pheromones and reproductive isolation in three sympatric Cornitermes species (Isoptera, Termitidae, Syntermitinae). J Insect Physiol 57:469–474

    CAS  PubMed  Google Scholar 

  8. Bourguignon T, Lo N, Šobotník J, Sillam-Dussès D, Roisin Y, Evans TA (2016) Oceanic dispersal, vicariance and human introduction shaped the modern distribution of the termites Reticulitermes, Heterotermes and Coptotermes. Proc R Soc B Biol Sci 283:20160179

    Google Scholar 

  9. Bradshaw CJ, Leroy B, Bellard C, Roiz D, Albert C, Fournier A, Barbet-Massin M, Salles JM, Simard F, Courchamp F (2016) Massive yet grossly underestimated global costs of invasive insects. Nature Com 7:12986

    CAS  Google Scholar 

  10. Chouvenc T (2019) The relative importance of queen and king initial weights in termite colony foundation success. Insect Soc 66:177–184

    Google Scholar 

  11. Chouvenc T, Su NY (2014) Colony age-dependent pathway in caste development of Coptotermes formosanus Shiraki. Insect Soc 61:171–182

    Google Scholar 

  12. Chouvenc T, Su NY (2017) Testing the role of cuticular hydrocarbons on intercolonial agonism in two subterranean termite species (Coptotermes) and their hybrids. Insect Soc 64:347–355

    Google Scholar 

  13. Chouvenc T, Helmick EE, Su NY (2015) Hybridization of two major termite invaders as a consequence of human activity. PLoS One 10:e0120745

    PubMed  PubMed Central  Google Scholar 

  14. Chouvenc T, Li HF, Austin J, Bordereau C, Bourguignon T, Cameron SL et al (2016a) Revisiting Coptotermes (Isoptera: Rhinotermitidae): a global taxonomic road map for species validity and distribution of an economically important subterranean termite genus. Syst Entomol 41:299–306

    Google Scholar 

  15. Chouvenc T, Scheffrahn RH, Su NY (2016b) Establishment and spread of two invasive subterranean termite species (Coptotermes formosanus and C. gestroi; Isoptera: Rhinotermitidae) in metropolitan southeastern Florida (1990–2015). Fla Entomol 99:187–192

    Google Scholar 

  16. Chouvenc T, Scheffrahn RH, Mullins AJ, Su NY (2017) Flight phenology of two Coptotermes species (Isoptera: Rhinotermitidae) in southeastern Florida. J Econ Entomol 110:1693–1704

    PubMed  Google Scholar 

  17. Clément JL, Bagnères AG (1998) Nestmate recognition in termites. In: Vander Meer RK, Breed MD, Espelie KE, Winston ML, Eds. Pheromone communication in social insects. Ants, wasps, bees and termites. Westview, Boulder, CO. pp162

  18. Connétable S, Robert A, Bordereau C (2012) Dispersal flight and colony development in the fungus-growing termites Pseudacanthotermes spiniger and P. militaris. Insect Soc 59:269–277

    Google Scholar 

  19. Crispo E, Moore JS, Lee-Yaw JA, Gray SM, Haller BC (2011) Broken barriers: human-induced changes to gene flow and introgression in animals: an examination of the ways in which humans increase genetic exchange among populations and species and the consequences for biodiversity. BioEssays 33:508–518

    PubMed  Google Scholar 

  20. Dieckmann U, Doebeli M (1999) On the origin of species by sympatric speciation. Nature 400:354

    CAS  PubMed  Google Scholar 

  21. Evans TA, Forschler BT, Grace JK (2013) Biology of invasive termites: a worldwide review. Annu Rev Entomol 58:455–474

    CAS  PubMed  Google Scholar 

  22. Evans TA, Forschler BT, Trettin CC (2019) Not just urban: the Formosan subterranean termite, Coptotermes formosanus, is invading forests in the southeastern USA. Biol Invasions 21:1283–1294

    Google Scholar 

  23. Ferreira MT (2008) Dispersal flight, post-flight behavior, and early colony development of the west Indian drywood termite Cryptotermes brevis (Walker) (Isoptera: Kalotermitidae). Master’s thesis, Department of Nematology and Entomology, University of Florida, Fort Lauderdale

  24. Fitzpatrick BM, Fordyce JA, Gavrilets S (2008) What, if anything, is sympatric speciation? J Evol Biol 21:1452–1459

    CAS  PubMed  Google Scholar 

  25. Gabe M (1968) Techniques Histologiques. Masson, Paris

    Google Scholar 

  26. Hanus R, Luxova A, Šobotník J, Kalinová B, Jiroš P, Křeček J, Bourguignon T, Bordereau C (2009) Sexual communication in the termite Prorhinotermes simplex (Isoptera, Rhinotermitidae) mediated by a pheromone from female tergal glands. Insect Soc 56:111–118

  27. Hochmair HH, Scheffrahn RH (2010) Spatial association of marine dockage with land-borne infestations of invasive termites (Isoptera: Rhinotermitidae: Coptotermes) in urban South Florida. J Econ Entomol 103:1338–1346

  28. Hoskin CJ, Higgie M, McDonald KR, Moritz C (2005) Reinforcement drives rapid allopatric speciation. Nature 437:1353–1356

    CAS  PubMed  Google Scholar 

  29. Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393

    CAS  PubMed  Google Scholar 

  30. Kopp M, Servedio MR, Mendelson TC, Safran RJ, Rodríguez RL, Hauber ME, Scordato EC, Symes LB, Balakrishnan CN, Zonana DM, Van Doorn GS (2018) Mechanisms of assortative mating in speciation with gene flow: connecting theory and empirical research. Am Nat 191:1–20

    PubMed  Google Scholar 

  31. Krishna K, Grimaldi DA, Krishna V, Engel MS (2013) Treatise on the Isoptera of the world: Vol 3. Bull Am Mus Nat Hist 377:623–973

    Google Scholar 

  32. Laduguie N, Robert A, Bonnard O, Vieau F, Le Quéré JL, Sémon E, Bordereau C (1994) Isolation and identification of (3Z, 6Z, 8E)-3, 6, 8-dodecatrien-1-ol in Reticulitermes santonensis Feytaud (Isoptera, Rhinotermitidae): roles in worker trail-following and in alate sex-attraction behavior. J Insect Physiol 40:781–787

    CAS  Google Scholar 

  33. Lefebvre T, Châline N, Limousin D, Dupont S, Bagnères AG (2008) From speciation to introgressive hybridization: the phylogeographic structure of an island subspecies of termite, Reticulitermes lucifugus corsicus. BMC Evol Biol 8:38

    PubMed  PubMed Central  Google Scholar 

  34. Leuthold RH (1975) Orientation mediated by pheromones in social insects. Pheromones and Defensive Secretions in Social Insects, pp.197-211

  35. Leuthold RH, Bruinsma O (1977) Pairing behavior in Hodotermes mossambicus (Isoptera). Psyche 84:109–119

    Google Scholar 

  36. Li HF, Su NY, Wu WJ (2010) Solving the hundred-year controversy of Coptotermes taxonomy in Taiwan. Am Entomol 56:222

    Google Scholar 

  37. Mallet J, Meyer A, Nosil P, Feder JL (2009) Space, sympatry and speciation. J Evol Biol 22:2332–2341

    CAS  PubMed  Google Scholar 

  38. Mendelson TC, Shaw KL (2012) The (mis) concept of species recognition. Trends Ecol Evol 27:421–427

    PubMed  Google Scholar 

  39. Mizumoto N, Dobata S (2019) Adaptive switch to sexually dimorphic movements by partner-seeking termites. Science Adv 5:eaau6108

  40. Naisbit RE, Jiggins CD, Mallet J (2001) Disruptive sexual selection against hybrids contributes to speciation between Heliconius cydno and Heliconius melpomene. Proc R Soc Lond B 268:1849–1854

    CAS  Google Scholar 

  41. Neoh KB, Lee CY (2009) Flight activity of two sympatric termite species, Macrotermes gilvus and Macrotermes carbonarius (Termitidae: Macrotermitinae). Environ Entomol 38:1697–1706

    PubMed  Google Scholar 

  42. Noor MA (1999) Reinforcement and other consequences of sympatry. Heredity 83:503–508

    PubMed  Google Scholar 

  43. Nosil P, Feder JL, Flaxman SM, Gompert Z (2017) Tipping points in the dynamics of speciation. Nat Ecol Evol 1(2):0001

    Google Scholar 

  44. Nutting WL (1969) Flight and colony foundation. In: Krishna K, Weesner FM (eds) Biology of termites, vol 1. Academic Press, New York, pp 233–282

    Google Scholar 

  45. Park YI, Bland JM, Raina AK (2004) Factors affecting post-flight behavior in primary reproductives of the Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae). J Insect Physiol 50:539–546

    CAS  PubMed  Google Scholar 

  46. Patel JS, Tong RL, Chouvenc T, Su NY (2019a) Comparison of temperature-dependent survivorship and wood-consumption rate among two invasive subterranean termite species (Blattodea: Rhinotermitidae: Coptotermes) and their hybrids. J Econ Entomol 112:300–304

    PubMed  Google Scholar 

  47. Patel JS, Chouvenc T, Su NY (2019b) Temperature preference of two invasive subterranean termite species and their hybrids (Blattodea: Rhinotermitidae: Coptotermes). J Econ Entomol 112:2888–2893

    PubMed  Google Scholar 

  48. Peppuy A (1999) Termites du nord Vietnam, communication chimique et isolement spécifique. Ph.D. dissertation, Université Pierre et Marie Curie, Paris VI. 146 p

  49. Rabelo J, Batista E, Cavaleri FVW, Meirelles AJ (2000) Viscosity prediction for fatty systems. J Amer Oil Chem Soc 77:1255–1262

    CAS  Google Scholar 

  50. Raina AK, Bland JM, Dickens JC, Park YI, Hollister B (2003) Premating behavior of dealates of the Formosan subterranean termite and evidence for the presence of a contact sex pheromone. J Insect Behav 16:233–245

    Google Scholar 

  51. Robert A, Peppuy A, Sémon E, Boyer FD, Lacey MJ, Bordereau C (2004) A new C12 alcohol identified as a sex pheromone and a trail-following pheromone in termites: the diene (Z,Z)-dodeca-3, 6-dien-1-ol. Naturwissenschaften 91:34–39

    CAS  PubMed  Google Scholar 

  52. Rust MK, Su NY (2012) Managing social insects of urban importance. Annu Rev Entomol 573:55–375

    Google Scholar 

  53. Scheffrahn RH, Su NY (2000) Asian subterranean termite, Coptotermes gestroi (= havilandi) (Wasmann) (Insecta: Isoptera: Rhinotermitidae). University of Florida IFAS Extension document EENY-128

  54. Sillam-Dussès D (2010) Trail pheromones and sex pheromones in termites. Nova Science Publishers/Novinka, New York

    Google Scholar 

  55. Sillam-Dussès D, Robert A, Sémon E, Lacey M, Bordereau C (2006) Trail-following pheromones and phylogeny in termites. In Proceedings of the IUSSI Congress, Washington, DC, USA

  56. Sillam-Dussès D, Hanus R, El-Latif AOA, Jiroš P, Krasulová J, Kalinová B, Valterová I, Šobotník J (2011) Sex pheromone and trail pheromone of the sand termite Psammotermes hybostoma. J Chem Ecol 37:179–188

    PubMed  Google Scholar 

  57. Su NY, Chouvenc T, Li HF (2017) Potential hybridization between two invasive termite species, Coptotermes formosanus and C. gestroi (Isoptera: Rhinotermitidae), and its biological and economic implications. Insects 8:14

    PubMed Central  Google Scholar 

  58. Sugio K, Miyaguni Y, Tayasu I (2018) Characteristics of dispersal flight and disperser production in an Asian dry-wood termite, Neotermes koshunensis (Isoptera, Kalotermitidae). Insect Soc 65:323–330

    Google Scholar 

  59. Tokoro M, Takahashi M, Tsuoda K, Yamaoka R (1989) Isolation and primary structure of trail pheromone of the termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Wood Res 76:29–38

    CAS  Google Scholar 

  60. Wen P, Ji BZ, Liu SW, Liu C, Sillam-Dussès D (2012) Sex-pairing pheromone in the Asian termite pest species Odontotermes formosanus. J Chem Ecol 38:566–575

    CAS  PubMed  Google Scholar 

  61. Zhang M, Evans TA (2017) Determining urban exploiter status of a termite using genetic analysis. Urban Ecosyst 20:535–545

    CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Ronald Pepin, Reynaldo Moscat, Alvin Puzio, Aaron Mullins, Joseph Velenovsky, Sang-Bin Lee for their help in collecting alates and performing some of the behavioral assays, Andy Fu and Johnalyn Gordon for their technical assistance with the chemical data acquisition, Nan-Yao Su for the use of research space and his undeterred support for termite research, and two anonymous reviewers for their constructive comments.

Funding

This study was supported in part by a grant from the USDA National Institute of Food and Agriculture, Hatch project number FLAFLT-005660/, by NSF-DEB grant agreement No. 1754083, and a University of Florida Early Career Seed Grant No. REA1801100.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Chouvenc.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chouvenc, T., Sillam-Dussès, D. & Robert, A. Courtship Behavior Confusion in Two Subterranean Termite Species that Evolved in Allopatry (Blattodea, Rhinotermitidae, Coptotermes). J Chem Ecol 46, 461–474 (2020). https://doi.org/10.1007/s10886-020-01178-2

Download citation

Keywords

  • Coptotermes
  • Sex pheromone
  • Reproductive isolation
  • Cuticular hydrocarbons
  • Pest species
  • (3Z,6Z,8E)-Dodeca-3,6,8-trien-1-ol