Skip to main content
Log in

Fruit Volatiles of Creeping Cucumber (Solena amplexicaulis) Attract a Generalist Insect Herbivore

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Herbivorous insects employ host plant volatile blends as cue for host recognition. Adults of Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae) feed on leaves, flowers, and fruits of Solena amplexicaulis (Lam.) Gandhi (syn: Melothria heterophylla) (Cucurbitaceae), commonly known as creeping cucumber. Currently, this pest is controlled by insecticides application. Hence, it is necessary to find out volatile components from fruits attracting the insect, which might be used for eco-friendly pest management program. behavioral responses of females were measured by Y-tube olfactometer bioassays towards volatile blends from undamaged (UD), insect-damaged (ID), and mechanically damaged (MD) fruits with the aim to identify the compounds responsible for host fruit location. Volatile organic compounds were identified and quantified by GC-MS and GC-FID analyses, respectively. Nonanal was predominant in volatile blends of UD, ID, and MD fruits. 1-Octen-3-ol, 3-octanone, 2-octanol, heptadienal (2E,4E), 1-pentadecanol, and 1-hexadecanol were present in volatile blends of ID and MD fruits, but females did not show response to these six compounds. 1-Octanol and 1-heptadecanol were unique in volatile blends of UD fruits after 4 hr of damage, but females did not show response to these compounds. Females were more attracted to volatile blends from UD fruits after 4 hr of damage in comparison to volatile blends released by UD fruits, due to increased emissions of (E,Z)-2,6-nonadienal and 2E-nonenal. A synthetic blend of 3.35 μg (E,Z)-2,6-nonadienal and 1.72 μg 2E-nonenal dissolved in 25 μl CH2Cl2 could be used for the development of baited traps to control this insect pest in integrated pest management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adhikary P, Mukherjee A, Barik A (2015) Attraction of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) to four varieties of Lathyrus sativus L. seed volatiles. Bull Entomol Res 105:187–201

    CAS  PubMed  Google Scholar 

  • Arimura G, Ozawa R, Horiuchi J, Nishioka T, Takabayashi J (2001) Plant–plant interactions mediated by volatiles emitted from plants infested by spider mites. Biochem Syst Ecol 29:1049–1061

    CAS  Google Scholar 

  • Arun CH, Kumar RS, Srinu S, Babu GL, Kumar GR, Babu JA (2011) Anti-inflammatory activity of aqueous extract of leaves of Solena amplexicaulis. Intl J Res Pharma Biomed Sci 2:1617–1619

    Google Scholar 

  • Bachmann GE, Segura DF, Devescovi F, Jua’rez ML, Ruiz MJ, Vera MT, Cladera JL, Teal PEA, Fernandez PC (2015) Male sexual behavior and pheromone emission is enhanced by exposure to guava fruit volatiles in Anastrepha fraterculus. PLoS One 10:e0129523

    PubMed  PubMed Central  Google Scholar 

  • Baldwin IT, Kessler A, Halitschke R (2002) Volatile signaling in plant–plant–herbivore interactions: what is real? Curr Opin Plant Biol 5:351–354

    CAS  PubMed  Google Scholar 

  • Bandyopadhyay S, Mukherjee SK (2009) Wild edible plants of Koch Bihar District, West Bengal. Nat Prod Rad 8:64–72

    Google Scholar 

  • Benelli G, Revadi S, Carpita A, Giunti G, Raspi A, Anfora G, Canale A (2013) Behavioral and electrophysiological responses of the parasitic wasp Psyttalia concolor (Szépligeti) (Hymenoptera: Braconidae) to Ceratitis capitata-induced fruit volatiles. Biol Control 64:116–124

    CAS  Google Scholar 

  • Bruce TJA, Pickett JA (2011) Perception of plant volatile blends by herbivorous insects − finding the right mix. Phytochemistry 72:1605–1611

    CAS  PubMed  Google Scholar 

  • Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274

    CAS  PubMed  Google Scholar 

  • Dickens JC (1989) Green leaf volatiles enhance aggregation pheromone of boll weevil, Anthonomus grandis. Entomol Exp Appl 52:191–203

    CAS  Google Scholar 

  • Dickens JC, Jang EB, Light DM, Alford AR (1990) Enhancement of insect pheromone responses by green leaf volatiles. Naturwissenschaften 77:29–31

    CAS  Google Scholar 

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Etl F, Berger A, Weber A, Schönenberger J, Dötterl S (2016) Nocturnal plant bugs use cis-jasmone to locate inflorescences of an araceae as feeding and mating site. J Chem Ecol 42:300–304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ge J, Li N, Yang J, Wei J, Kang L (2019) Female adult puncture-induced plant volatiles promote mating success of the pea leafminer via enhancing vibrational signals. Phil Trans R Soc B 374:20180318. https://doi.org/10.1098/rstb.2018.0318

    Article  CAS  PubMed  Google Scholar 

  • Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414

    CAS  PubMed  Google Scholar 

  • Gouinguené S, Alborn H, Turlings TCJ (2003) Induction of volatile emissions in maize by different larval instars of Spodoptera littoralis. J Chem Ecol 29:145–162

    PubMed  Google Scholar 

  • Hare JD (2011) Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu Rev Entomol 56:161–180

    CAS  PubMed  Google Scholar 

  • Hern A, Dorn S (2001) Induced emissions of apple fruit volatiles by the codling moth: changing patterns with different time periods after infestation and different larval instars. Phytochemistry 57:409–416

    CAS  PubMed  Google Scholar 

  • Jaffé K, Sánchez P, Cerda H, Hernández JV, Jaffé R, Urdaneta N, Guerra G, Martinez R, Miras B (1993) Chemical ecology of the palm weevil Rhynchophorus palmarum (L.) (Coleoptera: Curculionidae): attraction to host plants and to a male-produced aggregation pheromone. J Chem Ecol 19:1703–1720

    PubMed  Google Scholar 

  • Jeyaprakash K, Ayyanar M, Geetha KN, Sekar T (2011) Traditional uses of medicinal plants among the tribal people in Theni District (Western Ghats), southern India. Asian Pac J Trop Biomed 1:S20–S25

    Google Scholar 

  • Jiang Y, Song J (2010) Fruits and fruit flavor: classification and biological characterization. In: Hui YH (ed) Handbook of fruit and vegetable flavors. John Wiley & Sons, Hoboken, pp 1–23

    Google Scholar 

  • Kabir MG, Rahman MM, Ahmed NU, Fakruddin M, Islam S, Mazumdar RM (2014) Antioxidant, antimicrobial, toxicity and analgesic properties of ethanol extract of Solena amplexicaulis root. Biol Res 47:36. https://doi.org/10.1186/0717-6287-47-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karmakar A, Barik A (2016) Solena amplexicaulis (Cucurbitaceae) flower surface wax influencing attraction of a generalist insect herbivore Aulacophora foveicollis (Coleoptera: Chrysomelidae). Int J Trop Insect Sci 36:70–81

    Google Scholar 

  • Karmakar A, Malik U, Barik A (2016a) Effects of leaf epicuticular wax compounds from Solena amplexicaulis (Lam.) Gandhi on olfactory responses of a generalist insect herbivore. Allelopathy J 37:253–272

  • Karmakar A, Mitra S, Barik A (2018) Systemically released volatiles from Solena amplexicaulis plant leaves with color cues influencing attraction of a generalist insect herbivore. Int J Pest Manage 64:210–220

    CAS  Google Scholar 

  • Karmakar A, Mukherjee A, Barik A (2016b) Floral volatiles with colour cues from two cucurbitaceous plants causing attraction of Aulacophora foveicollis. Entomol Exp Appl 158:133–141

    CAS  Google Scholar 

  • Karthika K, Paulsamy S (2012) Antibacterial potential of traditional plant species Solena amplexicaulis (Lam.) Gandhi. against certain human pathogens. Asian J Pharm Clin Res 5:255–257

  • Karthika K, Paulsamy S (2014) Phytochemical profiling of leaf, stem, and tuber parts of Solena amplexicaulis (Lam.) Gandhi using GC-MS. Int Sch Res Notices. https://doi.org/10.1155/2014/567409

  • Karthika K, Paulsamy S, Jamuna S (2012) Evaluation of in vitro antioxidant potential of methanolic leaf and stem extracts of Solena amplexicaulis (Lam.) Gandhi. J Chem Pharm Res 4:3254–3258

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    CAS  PubMed  Google Scholar 

  • Kessler A, Halitschke R (2007) Specificity and complexity: the impact of herbivore-induced plant responses on arthropod community structure. Curr Opin Plant Biol 10:409–414

    CAS  PubMed  Google Scholar 

  • Kessler D, Gase K, Baldwin IT (2008) Field experiments with transformed plants reveal the sense of floral scents. Science 321:1200–1202

    CAS  PubMed  Google Scholar 

  • Landolt PJ, Phillips TW (1997) Host plant influences on sex pheromone behavior of phytophagous insects. Annu Rev Entomol 42:371–391

    CAS  PubMed  Google Scholar 

  • Light DM, Knight AL, Henrick CA, Rajapaska D, Lingren B, Dickens JC, Reynolds KM, Buttery RG, Merrill G, Roitman J, Campbell BC (2001) A pear-derived kairomone with pheromonal potency that attracts male and female codling moth, Cydia pomonella (L.). Naturwissenschaften 88:333–338

    CAS  PubMed  Google Scholar 

  • Magalhães DM, Borges M, Laumann RA, Sujii ER, Mayon P, Caulfield JC, Midega CAO, Khan ZR, Pickett JA, Birkett MA, Blassioli-Moraes MC (2012) Semiochemicals from herbivory induced cotton plants enhance the foraging behaviour of the cotton boll weevil, Anthonomus grandis. J Chem Ecol 38:1528–1538

    PubMed  Google Scholar 

  • Magalhães DM, Borges M, Laumann RA, Woodcock CM, Withall DM, Pickett JA, Birkett MA, Blassioli-Moraes MC (2018) Identification of volatile compounds involved in host location by Anthonomus grandis (Coleoptera:Curculionidae). Front Ecol Evol 6:98. https://doi.org/10.3389/fevo.2018.00098

    Article  Google Scholar 

  • Malik U, Karmakar A, Barik A (2016) Attraction of the potential biocontrol agent Galerucella placida (Coleoptera: Chrysomelidae) to the volatiles of Polygonum orientale (Polygonaceae) weed leaves. Chemoecology 26:45–58

    CAS  Google Scholar 

  • Mitra S, Karmakar A, Mukherjee A, Barik A (2017) The role of leaf volatiles of Ludwigia octovalvis (Jacq.) Raven in the attraction of Altica cyanea (Weber) (Coleoptera: Chrysomelidae). J Chem Ecol 43:679–692

  • Mukherjee A, Karmakar A, Barik A (2017) Bionomics of Momordica cochinchinensis fed Aulacophora foveicollis (Coleoptera: Chrysomelidae). Proc Zool Soc 70:81–87

    Google Scholar 

  • Mukherjee A, Sarkar N, Barik A (2013) Alkanes in flower surface waxes of Momordica cochinchinensis influence attraction to Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae). Neotrop Entomol 42:366–371

    CAS  PubMed  Google Scholar 

  • Mukherjee A, Sarkar N, Barik A (2015) Momordica cochinchinensis (Cucurbitaceae) leaf volatiles: semiochemicals for host location by the insect pest, Aulacophora foveicollis (Coleoptera: Chrysomelidae). Chemoecology 25:93–104

    CAS  Google Scholar 

  • Nagarani G, Abirami A, Siddhuraju P (2014) Food prospects and nutraceutical attributes of Momordica species: a potential tropical bioresources – a review. Food Sci Hum Wellness 3:117–126

    Google Scholar 

  • Najar-Rodriguez AJ, Galizia CG, Stierle J, Dorn S (2010) Behavioral and neurophysiological responses of an insect to changing ratios of constituents in host plant-derived volatile mixtures. J Exp Biol 213:3388–3397

    CAS  PubMed  Google Scholar 

  • Negre-Zakharov F, Long MC, Dudareva N (2009) Floral scents and fruit aromas inspired by nature. In: Osbourn AE, Lanzotti V (eds) Plant-derived natural products. Springer, New York, pp 405–431

    Google Scholar 

  • Parameshwar H, Reddy YN, Kumar BR, Mohan GK (2010) Hepatoprotective effect of Solena amplexicaulis (tuber) on acute carbon tetrachloride induced hepatotoxicity. Int J Pharm Technol 2:375–384

    Google Scholar 

  • Piesik D, Kalka I, Wenda-Piesik A, Bocianowski J (2014) Apion miniatum Germ. herbivory on the mossy sorrel, Rumex confertus Willd.: induced plant volatiles and weevil orientation responses. Pol J Environ Stud 23:2149–2156

  • Piesik D, Pańka D, Delaney KJ, Skoczek A, Lamparski R, Weaver DK (2011) Cereal crop volatile organic compound induction after mechanical injury, beetle herbivory (Oulema spp.), or fungal infection (Fusarium spp.). J Plant Physiol 168:878–886

    CAS  PubMed  Google Scholar 

  • Piesik D, Wenda-Piesik A, Lamparski R, Tabaka P, Ligor T, Buszewski B (2010) Effects of mechanical injury and insect feeding on volatiles emitted by wheat plants. Entomol Fennica 21:117–128

    Google Scholar 

  • Pullaiah T, Murthy KSR, Goud PSP, Kumar TDC, Vijayakumar R (2003) Medicinal plants used by the tribals of Nallamalais, eastern Ghats of India. J Trop Med Plants 4:237–243

    Google Scholar 

  • Rahaman MA, Prodhan MDH (2007) Effects of net barrier and synthetic pesticides on red pumpkin beetle and yield of cucumber. Int J Sustain Crop Prod 2:30–34

    Google Scholar 

  • Rashid MA, Khan MA, Arif MJ, Javed N (2014) Red pumpkin beetle, Aulacophora foveicollis Lucas; a review of host susceptibility and management practices. Acad J Entomol 7:38–54

    Google Scholar 

  • Reddy GVP, Guerrero A (2004) Interactions of insect pheromones and plant semiochemicals. Trends Plant Sci 9:253–261

    CAS  PubMed  Google Scholar 

  • Rodríguez A, Alquézar B, Pena L (2013) Fruit aromas in mature fleshy fruits as signals of readiness for predation and seed dispersal. New Phytol 197:36–48

    PubMed  Google Scholar 

  • Sarkar N, Karmakar A, Barik A (2016) Volatiles of Solena amplexicaulis (lam.) Gandhi leaves influencing attraction of two generalist insect herbivores. J Chem Ecol 42:1004–1015

    CAS  PubMed  Google Scholar 

  • Sarkar N, Mukherjee A, Barik A (2015) Attraction of Epilachna dodecastigma (Coleoptera: Coccinellidae) to Momordica charantia (Cucurbitaceae) leaf volatiles. Canad Entomol 147:169–180

    Google Scholar 

  • Tasin M, Anfora G, Ioriatti C, Carlin S, De Cristofaro A, Schmidt S, Bengtsson M, Versini G, Witzgall P (2005) Antennal and behavioral responses of grapevine moth Lobesia botrana females to volatiles from grapevine. J Chem Ecol 31:77–87

    CAS  PubMed  Google Scholar 

  • Tasin M, Bäckman A-C, Anfora G, Carlin S, Ioriatti C, Witzgall P (2010) Attraction of female grapevine moth to common and specific olfactory cues from 2 host plants. Chem Senses 35:57–64

    PubMed  Google Scholar 

  • Tripathy PK, Kumar S, Jena PK (2014) Nutritional and medicinal values of selected wild cucurbits available in Similipal biosphere reserve forest, Odisha. Int J Pharm Sci Res 5:5430–5437

    Google Scholar 

  • van Den Dool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr A 11:463–471

    Google Scholar 

  • Venkateshwarlu E, Raghuram Reddy A, Goverdhan P, Swapna Rani K, Jayapal Reddy G (2011) In vitro and in vivo antioxidant activity of methanolic extract of Solena amplexicaulis (whole plant). Int J Pharm Bio Sci 1:522–533

    Google Scholar 

  • Vivaldo G, Masi E, Taiti C, Caldarelli G, Mancuso S (2017) The network of plants volatile organic compounds. Sci Rep 7:11050–11018. https://doi.org/10.1038/s41598-017-10975-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterhouse DF, Norris KR (1987) Aulacophora species in biological control Pacific prospects. Inkata Press, Melbourne

    Google Scholar 

  • Xu H, Turlings TCJ (2018) Plant volatiles as mate-finding cues for insects. Trends Plant Sci 23:100–111

    CAS  PubMed  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice Hall, New Jersey

  • Zimba K, Hill MP, Moore SD, Heshula U (2015) Agathis bishopi (Hymenoptera: Braconidae) as a potential tool for detecting oranges infested with Thaumatotibia leucotreta (Lepidoptera: Tortricidae). J Insect Behav 28:618–633

    Google Scholar 

Download references

Acknowledgments

The authors thank anonymous reviewers for many helpful comments of earlier versions of the manuscript. We thank Dr. Janakiraman Poorani, Principal Scientist, National Research Centre for Banana, Tamilnadu for identifying the insect, and ex-Professor, Dr. Ambarish Mukherjee, Department of Botany, The University of Burdwan for identification of the plant. We also thank DST PURSE Phase-II for providing necessary instrumental facilities.

Author information

Authors and Affiliations

Authors

Contributions

A.M.B. and A.K. designed experiments; and A. Koner, P.M. and S.D. performed bioassays. A.K., A. Koner and P.M. did chemical analyses. A.M.B. and A.K. analysed data. A.K. and P.M. made the Figs. A.M.B. wrote the manuscript. All authors edited the manuscript and approved the final version of the manuscript.

Corresponding author

Correspondence to Anandamay Barik.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(DOCX 925 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmakar, A., Mitra, P., Koner, A. et al. Fruit Volatiles of Creeping Cucumber (Solena amplexicaulis) Attract a Generalist Insect Herbivore. J Chem Ecol 46, 275–287 (2020). https://doi.org/10.1007/s10886-020-01154-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-020-01154-w

Keywords

Navigation