Identification of the Trail Pheromone of the Carpenter Ant Camponotus modoc

A Correction to this article was published

This article has been updated

Abstract

Trail pheromones deposited by ants lead nestmates to food sources. Based on previous evidence that the trail pheromone of the carpenter ant Camponotus modoc originates from the hindgut, our objective in this study was to identify the key component(s) of the pheromone. We collected C. modoc colonies from conifer forests and maintained them in an outdoor enclosure near our laboratory for chemical analyses and behavioral experiments. In gas chromatographic-electroantennographic detection and gas chromatography-mass spectrometric analyses of worker ant hindgut extracts, we identified five candidate components: 2,4-dimethylhexanoic acid, 2,4-dimethyl-5-hexanolide, pentadecane, dodecanoic acid and 3,4-dihydro-8-hydroxy-3,5,7-trimethylisocoumarin. In a series of trail-following experiments, ants followed trails of synthetic 2,4-dimethyl-5-hexanolide, a blend of the five compounds, and hindgut extract over similar distances, indicating that the hexanolide accounted for the entire behavioral activity of the hindgut extract. The hexanolide not only mediated orientation of C. modoc foragers on trails, it also attracted them over distance, indicating a dual function. Further analyses and bioassays with racemic and stereoselectively synthesized hexanolides revealed that the ants produce, and respond to, the (2S,4R,5S)-stereoisomer. The same stereoisomer is a trail pheromone component in several Camponotus congeners, indicating significant overlap in their respective trail pheromone communication systems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Change history

  • 03 March 2020

    The original version of this article unfortunately contained a mistake.

  • 03 March 2020

    The original version of this article unfortunately contained a mistake.

References

  1. Adams ES (1990) Interaction between the ants Zacryptocerus maculatus and Azteca trigona: interspecific parasitization of information. Biotropica 22:200–206

    Article  Google Scholar 

  2. Akre RD, Hansen LD, Myhre EA (1994) Colony size and polygyny in carpenter ants (Hymenoptera: Formicidae ). J Kansas Entomol Soc 67:1–9

    Google Scholar 

  3. Arn H, Städler E, Rauscher S (1975) The electroantennographic detector — a selective and sensitive tool in the gas chromatographic analysis of insect pheromones. Z Naturforsch 30:722–725

    Article  Google Scholar 

  4. Attygalle AB, Kern F, Huang Q, Meinwald J (1998) Trail pheromone of the myrmicine ant Aphaenogaster rudis (Hymenoptera: Formicidae). Naturwissenschaften 85:38–41. https://doi.org/10.1007/s001140050450

    CAS  Article  PubMed  Google Scholar 

  5. Attygalle AB, Morgan ED (1983) Trail pheromone of the ant Tetramorium caespitum L. Naturwissenschaften 70:364–365. https://doi.org/10.1007/BF00990315

    CAS  Article  Google Scholar 

  6. Beckers SG, Deneubourg JL, Pasteels JM (1989) Colony size, communication and ant foraging strategy. Psyche 96:239–256. https://doi.org/10.1155/1989/94279

    Article  Google Scholar 

  7. Bestmann HJ, Kern F, Schäfer D, Witschel MC (1992) 3,4-Dihydroisocoumarins, a new class of ant trail pheromones. Angew Chemie Int Ed English 31:795–796. https://doi.org/10.1002/anie.199207951

    Article  Google Scholar 

  8. Bestmann HJ, Haak U, Kern F, Hölldobler B (1995) 2,4-Dimethyl-5-hexanolide, a trail pheromone component of the carpenter ant Camponotus herculeanus. Naturwissenschaften 82:142–144. https://doi.org/10.1007/BF01177276

    CAS  Article  Google Scholar 

  9. Bestmann HJ, Liepold B, Kress A, Hofmann A (1999) (2S,4R,5S)-2,4-Dimethyl-5-hexanolide: ants of different species Camponotus can distinguish the absolute configuration of their trail pheromone. Chem Eur J 5:2984–2989

    CAS  Article  Google Scholar 

  10. Billen J, Beeckman W, Morgan ED (1992) Active trail pheromone compounds and trail following in the ant Atta sexdens sexdens (Hymenoptera Formicidae). Ethol Ecol Evol 4:197–202. https://doi.org/10.1080/08927014.1992.9525342

    Article  Google Scholar 

  11. Blum MS, Wilson EO (1964) The anatomical source of trail substances in formicine ants. Psyche 71:28–31. https://doi.org/10.1155/1964/43846

    CAS  Article  Google Scholar 

  12. Bolton B (1995) A new general catalogue of the ants of the world. Harvard University Press, Cambridge, MA

    Google Scholar 

  13. Cerdá X, van Oudenhove L, Bernstein C, Boulay R (2014) A list of and some comments about the trail pheromones of ants. Nat Prod Commun 9:1115–1122. https://doi.org/10.1177/1934578X1400900813

    Article  PubMed  Google Scholar 

  14. Chalissery JM, Renyard A, Gries R, Hoefele D, Alamsetti SK, Gries G (2019) Ants sense, and follow, trail pheromones of ant community members. Insects 10:383. https://doi.org/10.3390/insects10110383

    Article  Google Scholar 

  15. Choe DH, Villafuerte DB, Tsutsui ND (2012) Trail pheromone of the Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae). PLoS One 7:e45016. https://doi.org/10.1371/journal.pone.0045016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Czaczkes TJ, Castorena M, Schürch R, Heinze J (2017) Pheromone trail following in the ant Lasius niger: high accuracy and variability but no effect of task state. Physiol Entomol 42:91–97. https://doi.org/10.1111/phen.12174

    CAS  Article  Google Scholar 

  17. Czaczkes TJ, Grüter C, Ellis L, Wood E, Ratnieks FLW (2013a) Ant foraging on complex trails: route learning and the role of trail pheromones in Lasius niger. J Exp Biol 216:188–197. https://doi.org/10.1242/jeb.076570

    Article  PubMed  Google Scholar 

  18. Czaczkes TJ, Grüter C, Ratnieks FLW (2015) Trail pheromones: an integrative view of their role in social insect colony organization. Annu Rev Entomol 60:581–599. https://doi.org/10.1146/annurev-ento-010814-020627

    CAS  Article  PubMed  Google Scholar 

  19. Czaczkes TJ, Grüter C, Ratnieks FLW (2013b) Negative feedback in ants: crowding results in less trail pheromone deposition. J R Soc Interface 10:20121009. https://doi.org/10.1098/rsif.2012.1009

    Article  PubMed  PubMed Central  Google Scholar 

  20. Czaczkes TJ, Nouvellet P, Ratnieks FLW (2011) Cooperative food transport in the Neotropical ant, Pheidole oxyops. Insect Soc 58:153–161. https://doi.org/10.1007/s00040-010-0130-1

    Article  Google Scholar 

  21. Czaczkes TJ, Ratnieks FLW (2012) Pheromone trails in the Brazilian ant Pheidole oxyops: extreme properties and dual recruitment action. Behav Ecol Sociobiol 66:1149–1156. https://doi.org/10.1007/s00265-012-1367-7

    Article  Google Scholar 

  22. David CT, Wood DL (1980) Orientation to trails by a carpenter ant, Camponotus modoc (Hymenoptera: Formicidae), in a giant sequoia forest. Can Entomol 112:993–1000. https://doi.org/10.4039/Ent112993-10

    Article  Google Scholar 

  23. Derstine NT, Ohler B, Jimenez SI, Landolt P, Gries G (2017) Evidence for sex pheromones and inbreeding avoidance in select north American yellowjacket species. Entomol Exp Appl 164:35–44

    CAS  Article  Google Scholar 

  24. El-Ziady S, Kennedy JS (1956) Beneficial effects of the common garden ant, Lasius niger L., on the black bean aphid, Aphis fabae Scopoli. Proc R Entomol Soc London (A) 31:61–65. https://doi.org/10.1111/j.1365-3032.1956.tb00208.x

    Article  Google Scholar 

  25. Evershed RP, Morgan ED, Cammaerts M (1982) 3-Ethyl-2,5-dimethylpyrazine, the trail pheromone from the venom gland of eight species of Myrmica ants. Insect Biochem 12:383–391

    CAS  Article  Google Scholar 

  26. Evison SEF, Petchey OL, Beckerman AP, Ratnieks FLW (2008) Combined use of pheromone trails and visual landmarks by the common garden ant Lasius niger. Behav Ecol Sociobiol 63:261–267. https://doi.org/10.1007/s00265-008-0657-6

    Article  Google Scholar 

  27. Fourcassié V, Dussutour A, Deneubourg J (2010) Ant traffic rules. J Exp Biol 213:2357–2363. https://doi.org/10.1242/jeb.031237

    Article  PubMed  Google Scholar 

  28. Gobin B, Peeters C, Billen J, Morgan ED (1998) Interspecific trail following and commensalism between the ponerine ant Gnamptogenys menadensis and the formicine ant Polyrhachis rufipes. J Insect Behav 11:361–369

    Article  Google Scholar 

  29. Greenberg L, Klotz JH (2000) Argentine ant (Hymenoptera: Formicidae) trail pheromone enhances consumption of liquid sucrose solution. J Econ Entomol 93:119–122

    CAS  Article  Google Scholar 

  30. Gries R, Khaskin G, Gries G, Bennett RG, King SGG, Morewood P, Slessor KN, Morewood DW (2002) (Z,Z)-4,7-Tridecadien-(S)-2-yl acetate: Sex pheromone of Douglas-fir cone gall midge, Contarinia oregonensis. J Chem Ecol 28:2283–2297. https://doi.org/10.1023/A:1021005517389

    CAS  Article  PubMed  Google Scholar 

  31. Grüter C, Czaczkes TJ, Ratnieks FLW (2011) Decision making in ant foragers (Lasius niger) facing conflicting private and social information. Behav Ecol Sociobiol 65:141–148. https://doi.org/10.1007/s00265-010-1020-2

    Article  Google Scholar 

  32. Guénard B, Weiser MD, Gómez K, Narula N, Economo EP (2017) The global ant biodiversity informatics (GABI) database: synthesizing data on the geographic distribution of ant species (Hymenoptera: Formicidae). Myrmecol News 24:83–89. https://doi.org/10.25849/myrmecol.news_024:083

    Article  Google Scholar 

  33. Hansen LD, Akre RD (1985) Biology of carpenter ants in Washington state. Melanderia 43:i–v 1-61

    Google Scholar 

  34. Hölldobler B (1971) Recruitment behavior in Camponotus socius (Hym. Formicidae). Z Vgl Physiol 75:123–142

    Google Scholar 

  35. Hölldobler B (1999) Multimodal signals in ant communication. J Comp Physiol A 184:129–141

    Article  Google Scholar 

  36. Hölldobler B, Braun U, Gronenberg W, Kirchner WH, Peeters C (1994) Trail communication in the ant Megaponera foetens (Fabr.) (Formicidae, Ponerinae). J Insect Physiol 40:585–593

    Article  Google Scholar 

  37. Hölldobler B, Möglich M, Maschwitz U (1974) Communication by tandem running in the ant Camponotus sericeus. J Comp Physiol 90:105–127

    Article  Google Scholar 

  38. Hölldobler B, Wilson EO (1978) Multiple recruitment systems of African weaver ant Oecophylla longinoda (Latrielle) (Hymenoptera: Formicidae). Behav Ecol Sociobiol 3:19–60

    Article  Google Scholar 

  39. Hölldobler B, Wilson EO (1990) The ants. The Belknap Press of Harvard University Press, Cambridge, MA

    Google Scholar 

  40. Jackson BD, Wright PJ, Morgan ED (1989) 3-Ethyl-2,5-dimethylpyrazine, a component of the trail pheromone of the ant Messor bouvieri. Experientia 45:487–489. https://doi.org/10.1007/BF01952041

    CAS  Article  Google Scholar 

  41. Janicki J, Narula N, Ziegler M, Guénard B, Economo EP (2016) Visualizing and interacting with large-volume biodiversity data using client-server web-mapping applications: the design and implementation of antmaps.org. Ecol Inform 32:185–193. https://doi.org/10.1016/j.ecoinf.2016.02.006

    Article  Google Scholar 

  42. Janssen E, Bestmann HJ, Hölldobler B, Kern F (1995) N,N-Dimethyluracil and actinidine, two pheromones of the ponerine ant Megaponera foetens (Fab.) (Hymenoptera: Formicidae). J Chem Ecol 21:1947–1955. https://doi.org/10.1007/BF02033854

    CAS  Article  PubMed  Google Scholar 

  43. Janssen E, Übler E, Bauriegel L, Kern F, Bestmann HJ, Attygalle AB, Steghaus-Kovac S, Maschwitz U (1997) Trail pheromone of the ponerine ant Leptogenys peuqueti (Hymenoptera: Formicidae): a multicomponent mixture of related compounds. Naturwissenschaften 84:122–125. https://doi.org/10.1007/s001140050360

    CAS  Article  Google Scholar 

  44. Kleineidam CJ, Rössler W, Hölldobler B, Roces F (2007) Perceptual differences in trail-following leaf-cutting ants relate to body size. J Insect Physiol 53:1233–1241. https://doi.org/10.1016/j.jinsphys.2007.06.015

    CAS  Article  PubMed  Google Scholar 

  45. Klotz JH (1984) Diel differences in foraging in two ant species. J Kansas Entomol Soc 57:111–118

    Google Scholar 

  46. Klotz JH, Reid BL (1992) The use of spatial cues for structural guideline orientation in Tapinoma sessile and Camponotus pennsylvanicus (Hymenoptera: Formicidae). J Insect Behav 5:71–82

    Article  Google Scholar 

  47. Klotz J, Reid BL, Hamilton J (2000) Locomotory efficiency in ants using structural guidelines (Hymenoptera: Formicidae). Sociobiology 35:79–88

    Google Scholar 

  48. Kohl E, Hölldobler B, Bestmann HJ (2001) Trail and recruitment pheromones in Camponotus socius (Hymenoptera: Formicidae). Chemoecology 11:67–73. https://doi.org/10.1007/PL00001834

    CAS  Article  Google Scholar 

  49. Kohl E, Hölldobler B, Bestmann HJ (2003) Trail pheromones and Dufour gland contents in three Camponotus species (C. castaneus, C. balzani, C. sericeiventris: Formicidae, Hymenoptera). Chemoecology 13:113–122. https://doi.org/10.1007/s00049-003-0237-1

    CAS  Article  Google Scholar 

  50. Liefke C, Hölldobler B, Maschwitz U (2001) Recruitment behavior in the ant genus Polyrhachis (Hymenoptera, Formicidae). J Insect Behav 14:637–657

    Article  Google Scholar 

  51. Lizon à l’Allemand S, Witte V (2010) A sophisticated, modular communication contributes to ecological dominance in the invasive ant Anoplolepis gracilipes. Biol Invasions 12:3551–3561. https://doi.org/10.1007/s10530-010-9750-7

    Article  Google Scholar 

  52. Menzel F, Blüthgen N (2010) Parabiotic associations between tropical ants: equal partnership or parasitic exploitation? J Anim Ecol 79:71–81. https://doi.org/10.1111/j.1365-2656.2009.01628.x

    CAS  Article  PubMed  Google Scholar 

  53. Menzel F, Pokorny T, Blüthgen N, Schmitt T (2010) Trail-sharing among tropical ants: interspecific use of trail pheromones? Ecol Entomol 35:495–503. https://doi.org/10.1111/j.1365-2311.2010.01206.x

    Article  Google Scholar 

  54. Mersch DP, Crespi A, Keller L (2013) Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science 340:1090–1093. https://doi.org/10.1126/science.1234316

    CAS  Article  PubMed  Google Scholar 

  55. Morgan ED (2008) Chemical sorcery for sociality: exocrine secretions of ants (Hymenoptera: Formicidae). Myrmecol News 11:79–90

    Google Scholar 

  56. Morgan ED (2009) Trail pheromones of ants. Physiol Entomol 34:1–17. https://doi.org/10.1111/j.1365-3032.2008.00658.x

    CAS  Article  Google Scholar 

  57. Morgan ED, Keegans SJ, Tits J, Wenseleers T, Billen J (2006) Preferences and differences in the trail pheromone of the leaf-cutting ant Atta sexdens sexdens (Hymenoptera: Formicidae). Eur J Entomol 103:553–558. https://doi.org/10.14411/eje.2006.075

    Article  Google Scholar 

  58. Muscedere ML, Johnson N, Gillis BC, Kamhi JF, Traniello JFA (2012) Serotonin modulates worker responsiveness to trail pheromone in the ant Pheidole dentata. J Comp Physiol A 198:219–227. https://doi.org/10.1007/s00359-011-0701-2

    CAS  Article  Google Scholar 

  59. Peeters C, Ito F (2015) Wingless and dwarf workers underlie the ecological success of ants (Hymenoptera: Formicidae). Myrmecol News 21:117–130

    Google Scholar 

  60. Planqué R, van den Berg JB, Franks NR (2010) Recruitment strategies and colony size in ants. PLoS One 5:1–8. https://doi.org/10.1371/journal.pone.0011664

    CAS  Article  Google Scholar 

  61. R Core Team (2018) R: a language and environment for statistical computing. https://www.R-project.org/

  62. Raley CM, Aubry KB (2006) Foraging ecology of pileated woodpeckers in coastal forests of Washington. J Wildl Manag 70:1266–1275

    Article  Google Scholar 

  63. Roces F (1993) Both evaluation of resource quality and speed of recruited leaf-cutting ants (Acromyrmex lundi) depend on their motivational state. Behav Ecol Sociobiol 33:183–189. https://doi.org/10.1007/BF00216599

    Article  Google Scholar 

  64. Seid MA, Traniello JFA (2006) Age-related repertoire expansion and division of labor in Pheidole dentata (Hymenoptera: Formicidae): a new perspective on temporal polyethism and behavioral plasticity in ants. Behav Ecol Sociobiol 60:631–644. https://doi.org/10.1007/s00265-006-0207-z

    Article  Google Scholar 

  65. Simola DF, Graham RJ, Brady CM, Enzmann BL, Desplan C, Ray A, Zwiebel LJ, Bonasio R, Reinberg D, Liebig J, Berger SL (2016) Epigenetic (re)programming of caste-specific behavior in the ant Camponotus floridanus. Science 351:aac6633. https://doi.org/10.1126/science.aac6633

    CAS  Article  PubMed  Google Scholar 

  66. Staddon B, Everton I (1980) Haemolymph of milkweed bug Oncopeltus fasciatus (Heteroptera: Lygaeidae): inorganic constituents and amino acids. Comp Biochem Physiol 65:371–374

    Article  Google Scholar 

  67. Tilles DA, Wood DL (1982) The influence of carpenter ant (Camponotus modoc) (Hymentoptera: Formicidae) attendance on the development and survival of aphids (Cinara spp.) (Homoptera: Aphididae) in a giant Sequoia forest. Can Entomol 114:1133–1142. https://doi.org/10.4039/Ent1141133-12

    Article  Google Scholar 

  68. Tilles DA, Wood DL (1986) Foraging behaviour of the carpenter ant, Camponotus modoc (Hymenoptera: Formicidae), in a giant sequoia forest. Can Entomol 118:861–867

    Article  Google Scholar 

  69. Traniello JFA (1977) Recruitment behavior, orientation, and the organization of foraging in the carpenter ant Camponotus pennsylvanicus Degeer (Hymenoptera: Formicidae). Behav Ecol Sociobiol 2:61–79

    Article  Google Scholar 

  70. Übler E, Kern F, Bestmann HJ, Hölldobler B, Attygalle AB (1995) Trail pheromone of two formicine ants, Camponotus silvicola and C. rufipes (Hymenoptera: Formicidae). Naturwissenschaften 82:523–525. https://doi.org/10.1007/BF01134489

    Article  Google Scholar 

  71. Van den Dool H, Kratz P (1963) A generalization of retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr A 11:463–471

    Article  Google Scholar 

  72. Vander Meer RK, Alonso LE (1998) Pheromone directed behaviour in ants. In: Vander Meer RK, Breed M, Winston M (eds) Pheromone communication in social insects. Westview press, Boulder, pp 159–192

    Google Scholar 

  73. Visicchio R, Mori A, Grasso DA, Castracani C, Le Moli F (2001) Glandular sources of recruitment, trail, and propaganda semiochemicals in the slave-making ant Polyergus rufescens. Ethol Ecol Evol 13:361–372. https://doi.org/10.1080/08927014.2001.9522767

    Article  Google Scholar 

  74. Welzel KF, Choe DH (2016) Development of a pheromone-assisted baiting technique for argentine ants (Hymenoptera: Formicidae). J Econ Entomol 109:1303–1309. https://doi.org/10.1093/jee/tow015

    CAS  Article  PubMed  Google Scholar 

  75. Wilson EO (1987) Causes of ecological success: the case of the ants. J Anim Ecol 56:1–9

    Article  Google Scholar 

  76. Wilson EO (1965) Trail sharing in ants. Psyche 72:2–7

    Article  Google Scholar 

  77. Wilson EO, Hölldobler B (2005) The rise of the ants: a phylogenetic and ecological explanation. Proc Natl Acad Sci 102:7411–7414. https://doi.org/10.1073/pnas.0502264102

    CAS  Article  PubMed  Google Scholar 

  78. Witte V, Attygalle AB, Meinwald J (2007) Complex chemical communication in the crazy ant Paratrechina longicornis Latreille (Hymenoptera: Formicidae). Chemoecology 17:57–62. https://doi.org/10.1007/s00049-006-0364-6

    Article  Google Scholar 

Download references

Acknowledgments

We thank three anonymous reviewers for constructive comments; Michael Gudmundson for field assistance in locating and collecting ant nests; Grady Ott for generously donating plastic bins for housing ants; Adam Blake and Leithen M’Gonigle for statistical and graphics advice; Laurel Hansen and Robert Higgins for assistance in ant identification; and Adriana Ibtisam, Jasper Li, April Lin, Nicholas Low and Zhanata Almazbekova for help with ant care. This research was supported by a MPM graduate entrance scholarship, a Thelma Finlayson graduate entrance scholarship, a Graduate Fellowship from Simon Fraser University and by an Alexander Graham Bell CGSM from the Natural Sciences and Engineering Research Council of Canada (NSERC) to AR. The research was further supported by an NSERC–Industrial Research Chair to GG with Scotts Canada Ltd. as the industrial sponsor.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Asim Renyard.

Electronic Supplementary Material

ESM 1

(MP4 45266 kb)

ESM 2

(MP4 10893 kb)

ESM 3

(DOCX 240 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Renyard, A., Alamsetti, S.K., Gries, R. et al. Identification of the Trail Pheromone of the Carpenter Ant Camponotus modoc. J Chem Ecol 45, 901–913 (2019). https://doi.org/10.1007/s10886-019-01114-z

Download citation

Keywords

  • Hymenoptera
  • Formicidae
  • Trail pheromone
  • Trail-following
  • Communication
  • Exocrine gland