Influence of Mutualistic Lifestyle, Mutualistic Partner, and Climate on Cuticular Hydrocarbon Profiles in Parabiotic Ants

Abstract

A vital trait in insects is their cuticular hydrocarbon (CHC) profile, which protects the insect against desiccation and serves in chemical communication. Due to these functions, CHC profiles are shaped by both climatic conditions and biotic interactions. Here, we investigated CHC differentiation in the neotropical parabiotic ant species Crematogaster levior and Camponotus femoratus, which mutualistically share a nest. Both consist of two cryptic species each (Cr. levior A and B and Ca. femoratus PAT and PS) that differ genetically and possess strongly different CHC profiles. We characterized and compared CHC profiles of the four cryptic species in detail. Our results suggest that Cr. levior A, Ca. femoratus PAT and Ca. femoratus PS adapted their CHC profiles to the parabiotic lifestyle by producing longer-chain CHCs. At the same time, they changed their major CHC classes, and produce more alkadienes and methyl-branched alkenes compared to Cr. levior B or non-parabiotic species. The CHC profiles of Cr. levior B were more similar to related, non-parabiotic species of the Orthocrema clade than Cr. levior A, and the chain lengths of B were similar to the reconstructed ancestral state. Signals of both the parabiotic partner (biotic conditions) and climate (abiotic conditions) were found in the CHC profiles of all four cryptic species. Our data suggest that mutualisms shaped the CHC profiles of the studied species, in particular chain length and CHC class composition. Beside this, signals of the parabiotic partners indicate potential impacts of biotic interactions, via chemical mimicry or chemical camouflage.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aitchison J (1982) The statistical analysis of compositional data. J R Stat Soc B 44:139–177

    Google Scholar 

  2. Anderson MJ (2017) Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef Stat Ref Online:1–15. https://doi.org/10.1002/9781118445112.stat07841

  3. Attygalle AB (1998) Microchemical techniques. In: Millar JG, Haynes KF (eds) Methods in chemical ecology - Volume 1: Chemical methods. Springer Science & Business Media, New York, pp 207–294

    Google Scholar 

  4. Bagnères A-G, Lorenzi MC (2010) Chemical deception/mimicry using cuticular hydrocarbons. In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, New York, pp 282–324

    Google Scholar 

  5. Blaimer B (2012) Acrobat ants go global – origin, evolution and systematics of the genus Crematogaster (Hymenoptera: Formicidae). Mol Phylogenet Evol 65:421–436. https://doi.org/10.1016/j.ympev.2012.06.028

  6. Blomquist GJ (2010) Structure and analysis of insect hydrocarbons. In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, New York, pp 19–34

    Google Scholar 

  7. Brückner A, Heethoff M (2017) A chemo-ecologists’ practical guide to compositional data analysis. Chemoecology 27:33–46. https://doi.org/10.1007/s00049-016-0227-8

    Article  CAS  Google Scholar 

  8. Buellesbach J, Whyte BA, Cash E, Gibson JD, Scheckel KJ, Sandidge R, Tsutsui ND (2018) Desiccation resistance and micro-climate adaptation: Cuticular hydrocarbon signatures of different argentine ant supercolonies across California. J Chem Ecol 44:1101–1114. https://doi.org/10.1007/s10886-018-1029-y

  9. Carlson DA, Bernier UR, Sutton BD (1998) Elution patterns from capillary GC for methyl-branched alkanes. J Chem Ecol 24:1845–1865. https://doi.org/10.1023/A:1022311701355

  10. Chung H, Carroll SB (2015) Wax, sex and the origin of species: dual roles of insect cuticular hydrocarbons in adaptation and mating. BioEssays 37:822–830. https://doi.org/10.1002/bies.201500014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Davidson DW (1988) Ecological studies of Neotropical ant gardens. Ecology 69:1138–1152. https://doi.org/10.2307/1941268

  12. Elia M, Khalil A, Bagnères AG, Lorenzi MC (2018) Appeasing their hosts: a novel strategy for parasite brood. Anim Behav 146:123–134. https://doi.org/10.1016/j.anbehav.2018.10.011

    Article  Google Scholar 

  13. Emery VJ, Tsutsui ND (2013) Recognition in a social Symbiosis: chemical phenotypes and Nestmate recognition behaviors of Neotropical Parabiotic ants. PLoS One 8:e56492. https://doi.org/10.1371/journal.pone.0056492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gibbs AG, Pomonis JG (1995) Physical properties of insect cuticular hydrocarbons: the effects of chain length, methyl-branching and unsaturation. Comp Biochem Physiol 112B:243–249. https://doi.org/10.1016/0305-0491(95)00081-X

  15. Guimarães PR, Jordano P, Thompson JN (2011) Evolution and coevolution in mutualistic networks. Ecol Lett 14:877–885. https://doi.org/10.1111/j.1461-0248.2011.01649.x

    Article  PubMed  Google Scholar 

  16. Hartke J, Sprenger PP, Sahm J, Winterberg H, Orivel J, Baur H, Beuerle T, Schmitt T, Feldmeyer B, Menzel F (2019) Cuticular hydrocarbons as potential mediators of cryptic species divergence in a mutualistic ant association. Ecol Evol 9:9160–9176. https://doi.org/10.1002/ece3.5464

  17. Hennig C (2007) Cluster-wise assessment of cluster stability. Comput Stat Data Anal 52:258–271. https://doi.org/10.1016/j.csda.2006.11.025

    Article  Google Scholar 

  18. Herre EA, Knowlton N, Mueller UG, Rehner SA (1999) The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol Evol 14:49–53. https://doi.org/10.1016/S0169-5347(98)01529-8

    Article  CAS  PubMed  Google Scholar 

  19. Hoeksema JD, Bruna EM (2000) Pursuing the big questions about interspecific mutualism: a review of theoretical approaches. Oecologia 125:321–330. https://doi.org/10.1007/s004420000496

    Article  PubMed  Google Scholar 

  20. Jongepier E, Foitzik S (2016) Ant recognition cue diversity is higher in the presence of slavemaker ants. Behav Ecol 27:304–311. https://doi.org/10.1093/beheco/arv153

    Article  Google Scholar 

  21. Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M (2017) Climatologies at high resolution for the earth’s land surface areas. Sci Data 4:170122. https://doi.org/10.1038/sdata.2017.122

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kleeberg I, Menzel F, Foitzik S (2017) The influence of slavemaking lifestyle, caste and sex on chemical profiles in Temnothorax ants: insights into the evolution of cuticular hydrocarbons. Proc R Soc B Biol Sci 284:20162249. https://doi.org/10.1098/rspb.2016.2249

    Article  CAS  Google Scholar 

  23. Leal LC, Jakovac CC, Bobrowiec PED, Camargo JLC, Peixoto PEC (2017) The role of parabiotic ants and environment on epiphyte composition and protection in ant gardens. Sociobiology 64:276–283. https://doi.org/10.13102/sociobiology.v64i3.1219

  24. Lenoir A, Malosse C, Yamaoka R (1997) Chemical mimicry between parasitic ants of the genus Formicoxenus and their host Myrmica (Hymenoptera, Formicidae). Biochem Syst Ecol 25:379–389. https://doi.org/10.1016/S0305-1978(97)00025-2

    Article  CAS  Google Scholar 

  25. Lenoir A, D’Ettorre P, Errard C (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:573–599. https://doi.org/10.1146/annurev.ento.50.071803.130345

    Article  CAS  PubMed  Google Scholar 

  26. Li H, Higashi H, Tamura K (2006) Estimation of boiling and melting points of light, heavy and complex hydrocarbons by means of a modified group vector space method. Fluid Phase Equilib 239:213–222. https://doi.org/10.1016/j.fluid.2005.11.004

    Article  CAS  Google Scholar 

  27. Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22

    Google Scholar 

  28. Longino JT (2003) The Crematogaster (Hymenoptera, Formicidae, Myrmicinae) of Costa Rica. Zootaxa 151:1–150. https://doi.org/10.11646/zootaxa.151.1.1

  29. Martin SJ, Drijfhout FP (2009) A review of ant cuticular hydrocarbons. J Chem Ecol 35:1151–1161. https://doi.org/10.1007/s10886-009-9695-4

    Article  CAS  PubMed  Google Scholar 

  30. Martin SJ, Helanterä H, Drijfhout FP (2008) Evolution of species-specific cuticular hydrocarbon patterns in Formica ants. Biol J Linn Soc 95:131–140.https://doi.org/10.1111/j.1095-8312.2008.01038.x

  31. Menzel F, Schmitt T (2012) Tolerance requires the right smell: first evidence for interspecific selection on chemical recognition cues. Evolution 66:896–904. https://doi.org/10.1111/j.1558-5646.2011.01489.x

  32. Menzel F, Blüthgen N, Schmitt T (2008a) Tropical parabiotic ants: highly unusual cuticular substances and low interspecific discrimination. Front Zool 5:16. https://doi.org/10.1186/1742-9994-5-16

    Article  PubMed  PubMed Central  Google Scholar 

  33. Menzel F, Linsenmair KE, Blüthgen N (2008b) Selective interspecific tolerance in tropical Crematogaster-Camponotus associations. Anim Behav 75:837–846. https://doi.org/10.1016/j.anbehav.2007.07.005

    Article  Google Scholar 

  34. Menzel F, Blüthgen N, Tolasch T, Conrad J, Beifuß U, Beuerle T, Schmitt T (2013) Crematoenones - a novel substance class exhibited by ants functions as appeasement signal. Front Zool 10:32. https://doi.org/10.1186/1742-9994-10-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Menzel F, Orivel J, Kaltenpoth M, Schmitt T (2014) What makes you a potential partner? Insights from convergently evolved ant-ant symbioses. Chemoecology 24:105–119. https://doi.org/10.1007/s00049-014-0149-2

    Article  Google Scholar 

  36. Menzel F, Blaimer BB, Schmitt T (2017a) How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait. Proc R Soc B Biol Sci 284:20161727. https://doi.org/10.1098/rspb.2016.1727

    Article  CAS  Google Scholar 

  37. Menzel F, Schmitt T, Blaimer BB (2017b) The evolution of a complex trait: Cuticular hydrocarbons in ants evolve independent from phylogenetic constraints. J Evol Biol 30:1372–1385. https://doi.org/10.1111/jeb.13115

    Article  CAS  PubMed  Google Scholar 

  38. Menzel F, Zumbusch M, Feldmeyer B (2018) How ants acclimate: impact of climatic conditions on the cuticular hydrocarbon profile. Funct Ecol 32:657–666. https://doi.org/10.1111/1365-2435.13008

    Article  Google Scholar 

  39. Mori A, Visicchio R, Sledge MF, Grasso DA, le Moli F, Turillazzi S, Spencer S, Jones GR (2000) Behavioural assays testing the appeasement allomone of Polyergus rufescens queens during host-colony usurpation. Ethol Ecol Evol 12:315–322

    Article  Google Scholar 

  40. Neupert S, DeMilto A, Drijfhout FP, Speller S, Adams RMM (2018) Host colony integration: Megalomyrmex guest ant parasites maintain peace with their host using weaponry. Anim Behav 139:71–79. https://doi.org/10.1016/j.anbehav.2018.02.021

    Article  Google Scholar 

  41. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens HH, Szoecs E, Wagner H (2019) vegan: Community Ecology Package. https://CRAN.R-project.org/package=vegan/

  42. Orivel J, Leroy C (2011) The diversity and ecology of ant gardens (Hymenoptera: Formicidae; Spermatophyta: Angiospermae). Myrmecol. News 14:73–85

  43. Orivel J, Errard C, Dejean A (1997) Ant gardens: interspecific recognition in parabiotic ant species. Behav Ecol Sociobiol 40:87–93. https://doi.org/10.1007/s002650050319

    Article  Google Scholar 

  44. Otte T, Hilker M, Geiselhardt S (2018) Phenotypic plasticity of Cuticular hydrocarbon profiles in insects. J Chem Ecol 44:235–247. https://doi.org/10.1007/s10886-018-0934-4

  45. Parmentier T, Yéo K, Dekoninck W, Wenseleers T (2017) An apparent mutualism between Afrotropical ant species sharing the same nest. Behav Ecol Sociobiol 71:46. https://doi.org/10.1007/s00265-017-2274-8

    Article  Google Scholar 

  46. Pérez-Lachaud G, Bartolo-Reyes JC, Quiroa-Montalván CM, Cruz-López L, Lenoir A, Lachaud JP (2015) How to escape from the host nest: imperfect chemical mimicry in eucharitid parasitoids and exploitation of the ants’ hygienic behavior. J Insect Physiol 75:63–72. https://doi.org/10.1016/j.jinsphys.2015.03.003

    Article  CAS  PubMed  Google Scholar 

  47. R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  48. Rajpurohit S, Hanus R, Vrkoslav V, Behrman EL, Bergland AO, Petrov D, Cvačka J, Schmidt PS (2017) Adaptive dynamics of cuticular hydrocarbons in Drosophila. J Evol Biol 30:66–80. https://doi.org/10.1111/jeb.12988

    Article  CAS  PubMed  Google Scholar 

  49. Revell LJ (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x

    Article  Google Scholar 

  50. Savarit F, Fénéron R (2014) Imperfect chemical mimicry explains the imperfect social integration of the inquiline ant Ectatomma parasiticum (Hymenoptera: Formicidae: Ectatomminae). Myrmecol. News 20:7–14

  51. Sprenger PP, Burkert LH, Abou B, Federle W, Menzel F (2018) Coping with climate: cuticular hydrocarbon acclimation of ants under constant and fluctuating conditions. J Exp Biol 221:jeb171488. https://doi.org/10.1242/jeb.171488

  52. Stinziano JR, Sové RJ, Rundle HD, Sinclair BJ (2015) Rapid desiccation hardening changes the cuticular hydrocarbon profile of Drosophila melanogaster. Comp Biochem Physiol Part A 180:38–42. https://doi.org/10.1016/j.cbpa.2014.11.004

    Article  CAS  Google Scholar 

  53. Swain RB (1980) Trophic competition among Parabiotic ants. Insect Soc 27:377–390. https://doi.org/10.1007/BF02223730

  54. van Wilgenburg E, Symonds MRE, Elgar MA (2011) Evolution of cuticular hydrocarbon diversity in ants. J Evol Biol 24:1188–1198. https://doi.org/10.1111/j.1420-9101.2011.02248.x

    Article  PubMed  Google Scholar 

  55. Vantaux A, Dejean A, Dor A, Orivel J (2007) Parasitism versus mutualism in the ant-garden parabiosis between Camponotus femoratus and Crematogaster levior. Insect Soc 54:95–99. https://doi.org/10.1007/s00040-007-0914-0

    Article  Google Scholar 

  56. Vicente RE, Dáttilo W, Izzo TJ (2014) Differential recruitment of Camponotus femoratus (Fabricius) ants in response to ant garden herbivory. Neotrop Entomol 43:519–525. https://doi.org/10.1007/s13744-014-0245-6

    Article  CAS  PubMed  Google Scholar 

  57. Wagner D, Tissot M, Gordon D (2001) Task-related environment alters the cuticular hydrocarbon composition of harvester ants. J Chem Ecol 27:1805–1819. https://doi.org/10.1023/A:1010408725464

  58. Youngsteadt E, Nojima S, Häberlein C, Schulz S, Schal C (2008) Seed odor mediates an obligate ant-plant mutualism in Amazonian rainforests. Proc Natl Acad Sci 105:4571–4575. https://doi.org/10.1073/pnas.0708643105

  59. Youngsteadt E, Baca JA, Osborne J, Schal C (2009) Species-specific seed dispersal in an obligate ant-plant mutualism. PLoS One 4:e4335. https://doi.org/10.1371/journal.pone.0004335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Youngsteadt E, Bustios PG, Schal C (2010) Divergent chemical cues elicit seed collecting by ants in an obligate multi-species mutualism in lowland Amazonia. PLoS One 5:e15822. https://doi.org/10.1371/journal.pone.0015822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Firstly, we would like to thank Heike Stypa for their support in the lab. Further on, we want to acknowledge Jérôme Chave, Philippe Gaucher and Dorothée Deslignes for permission to sample at the Nouragues Ecological Research Station, Aurélie Dourdain for allowing us to work at the Paracou Research Station and similarly, the late Philippe Cerdan for the Hydreco Lab Petit Saut. Next, we thank Bonnie Blaimer and Manfred Verhaagh for their species identification. Finally, we want to thank Marina Psalti and two anonymous reviewers for useful comments on an earlier version of this manuscript.

Funding

This study was funded by the German Research Foundation (DFG, grant number to FM: ME 3842/5–1, TS: SCHM 2645/7–1 and BF: FE 1333/7–1) and an “Investissement d’Avenir” grant managed by the French Agence Nationale de la Recherche to JO (CEBA, ref. ANR-10-LABX-25-01).

Author information

Affiliations

Authors

Contributions

FM, BF and TS designed the research; PPS, JH, BF, JO and FM collected the animals; PPS performed the chemical analyses and collected the data; PPS and FM analyzed the data; PPS and FM wrote the first version of the manuscript. All authors revised and approved the final manuscript.

Corresponding author

Correspondence to Philipp P. Sprenger.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no competing interests.

Research Involving Human Participants and/or Animals

There is no ethics committee overseeing experimental research on ants. However, all efforts were made to treat the animals as humanely as possible. Research and specimen export was executed under permission of the Republic of France (Permission NOR: TREL173489A/13).

Informed Consent

Not applicable.

Electronic Supplementary Material

ESM 1

(DOCX 364 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sprenger, P.P., Hartke, J., Feldmeyer, B. et al. Influence of Mutualistic Lifestyle, Mutualistic Partner, and Climate on Cuticular Hydrocarbon Profiles in Parabiotic Ants. J Chem Ecol 45, 741–754 (2019). https://doi.org/10.1007/s10886-019-01099-9

Download citation

Keywords

  • Adaptation
  • Chemical communication
  • Cryptic species
  • Formicidae
  • Mimicry
  • Mutualism
  • Parabiosis