Skip to main content

Advertisement

Log in

Toxicity of Milkweed Leaves and Latex: Chromatographic Quantification Versus Biological Activity of Cardenolides in 16 Asclepias Species

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Cardenolides are classically studied steroidal defenses in chemical ecology and plant-herbivore coevolution. Although milkweed plants (Asclepias spp.) produce up to 200 structurally different cardenolides, all compounds seemingly share the same well-characterized mode of action, inhibition of the ubiquitous Na+/K+ ATPase in animal cells. Over their evolutionary radiation, milkweeds show a quantitative decline of cardenolide production and diversity. This reduction is contrary to coevolutionary predictions and could represent a cost-saving strategy, i.e. production of fewer but more toxic cardenolides. Here we test this hypothesis by tandem cardenolide quantification using HPLC (UV absorption of the unsaturated lactone) and a pharmacological assay (in vitro inhibition of a sensitive Na+/K+ ATPase) in a comparative study of 16 species of Asclepias. We contrast cardenolide concentrations in leaf tissue to the subset of cardenolides present in exuding latex. Results from the two quantification methods were strongly correlated, but the enzymatic assay revealed that milkweed cardenolide mixtures often cause stronger inhibition than equal amounts of a non-milkweed reference cardenolide, ouabain. Cardenolide concentrations in latex and leaves were positively correlated across species, yet latex caused 27% stronger enzyme inhibition than equimolar amounts of leaf cardenolides. Using a novel multiple regression approach, we found three highly potent cardenolides (identified as calactin, calotropin, and voruscharin) to be primarily responsible for the increased pharmacological activity of milkweed cardenolide mixtures. However, contrary to an expected trade-off between concentration and toxicity, later-diverging milkweeds had the lowest amounts of these potent cardenolides, perhaps indicating an evolutionary response to milkweed’s diverse community of specialist cardenolide-sequestering insect herbivores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal AA (2011) Current trends in the evolutionary ecology of plant defence. Funct Ecol 25:420–432

    Article  Google Scholar 

  • Agrawal AA (2017) Monarchs and milkweed: a migrating butterfly, a poisonous plant, and their remarkable story of coevolution. Princeton University Press, Princeton

    Book  Google Scholar 

  • Agrawal AA, Fishbein M (2008) Phylogenetic escalation and decline of plant defense strategies. Proc Natl Acad Sci U S A 105:10057–10060

    Article  PubMed  PubMed Central  Google Scholar 

  • Agrawal AA, Konno K (2009) Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu Rev Ecol Evol Syst 40:311–331

    Article  Google Scholar 

  • Agrawal AA, Lajeunesse MJ, Fishbein M (2008) Evolution of latex and its constituent defensive chemistry in milkweeds (Asclepias): a phylogenetic test of plant defense escalation. Entomol Exp Appl 128:126–138

    Article  CAS  Google Scholar 

  • Agrawal AA, Fishbein M, Halitschke R, Hastings AP, Rabosky DL, Rasmann S (2009a) Evidence for adaptive radiation from a phylogenetic study of plant defenses. Proc Natl Acad Sci U S A 106:18067–18072

    Article  PubMed  PubMed Central  Google Scholar 

  • Agrawal AA, Salminen JP, Fishbein M (2009b) Phylogenetic trends in phenolic metabolism of milkweeds (Asclepias): evidence for escalation. Evolution 63:663–673

    Article  CAS  PubMed  Google Scholar 

  • Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S (2012) Toxic cardenolides: chemical ecology and coevolution of specialized plant-herbivore interactions. New Phytol 194:28–45

    Article  CAS  PubMed  Google Scholar 

  • Agrawal AA, Patrick ET, Hastings AP (2014) Tests of the coupled expression of latex and cardenolide plant defense in common milkweed (Asclepias syriaca). Ecosphere 5:1–11

    Article  Google Scholar 

  • Agrawal AA, Ali JG, Rasmann S, Fishbein M (2015) Macroevolutionary trends in the defense of milkweeds against monarchs: latex, cardenolides, and tolerance of herbivory. In: Oberhauser K, Altizer S, Nail K (eds) Monarchs in a changing world: biology and conservation of an iconic insect. Cornell University Press, Ithaca, pp 47–59

    Google Scholar 

  • Benson JM, Seiber JN, Bagley CV, Keeler RF, Johnson AE, Young S (1979) Effects on sheep of the milkweeds Asclepias eriocarpa and Asclepias labriformis and of cardiac glycoside-containing derivative material. Toxicon 17:155–165

    Article  CAS  PubMed  Google Scholar 

  • Berenbaum M (1978) Toxicity of furanocoumarin to armyworms: a case of biosynthetic escape from insect herbivores. Science 201:532–534

    Article  CAS  PubMed  Google Scholar 

  • Berenbaum MR (1995) The chemistry of defense: theory and practice. Proc Natl Acad Sci U S A 92:2–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berenbaum MR (1999) Animal-plant warfare: molecular basis for cytochrome P450-mediated natural adaptation. In: Puga A, Wallace K (eds) Molecular biology of the toxic response. Taylor and Francis, Philadelphia, pp 553–571

    Google Scholar 

  • Berenbaum MR, Zangerl AR (1993) Furanocoumarin metabolism in Papilio polyxenes: biochemistry, genetic variability, and ecological significance. Oecologia 95:370–375

    Article  CAS  PubMed  Google Scholar 

  • Brower LP, Seiber JN, Nelson CJ, Lynch SP, Tuskes PM (1982) Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies, Danaus plexippus reared on the milkweed Asclepias eriocarpa in California. J Chem Ecol 8:579–633

    Article  CAS  PubMed  Google Scholar 

  • Cacho NI, Kliebenstein DJ, Strauss SY (2015) Macroevolutionary patterns of glucosinolate defense and tests of defense-escalation and resource availability hypotheses. New Phytol 208:915–927

    Article  CAS  PubMed  Google Scholar 

  • Conner WE, Boada R, Schroeder FC, Gonzalez A, Meinwald J, Eisner T (2000) Chemical defense: bestowal of a nuptial alkaloidal garment by a male moth on its mate. Proc Natl Acad Sci U S A 97:14406–14411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Despres L, David JP, Gallet C (2007) The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol Evol 22:298–307

    Article  PubMed  Google Scholar 

  • Dobler S, Dalla S, Wagschal V, Agrawal AA (2012) Community-wide convergent evolution in insect adaptation to toxic cardenolides by substitutions in the Na,K-ATPase. Proc Natl Acad Sci U S A 109:13040–13045

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobler S, Petschenka G, Wagschal V, Flacht L (2015) Convergent adaptive evolution - how insects master the challenge of cardiac glycoside-containing host plants. Entomol Exp Appl 157:30–39

    Article  CAS  Google Scholar 

  • Dzimiri N, Fricke U, Klaus W (1987) Influence of derivation on the lipophilicity and inhibitory actions of cardiac glycosides on myocardial Na+-K+-ATPase. Br J Pharmacol 91:31–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Eisner T, Meinwald J (1995) The chemistry of sexual selection. Proc Natl Acad Sci U S A 92:50–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrell BD, Mitter C (1998) The timing of insect-plant diversification: might Tetraopes (Coleoptera : Cerambycidae) and Asclepias (Asclepiadaceae) have co-evolved? Biol J Linn Soc 63:553–577

    Google Scholar 

  • Firn RD, Jones CG (2003) Natural products - a simple model to explain chemical diversity. Nat Prod Rep 20:382–391

    Article  CAS  PubMed  Google Scholar 

  • Fishbein M, Chuba D, Ellison C, Mason-Gamer RJ, Lynch SP (2011) Phylogenetic relationships of Asclepias (Apocynaceae) inferred from non-coding chloroplast DNA sequences. Syst Bot 36:1008–1023

    Article  Google Scholar 

  • Forbey JS, Dearing MD, Gross EM, Orians CM, Sotka EE, Foley WJ (2013) A pharm-ecological perspective of terrestrial and aquatic plant-herbivore interactions. J Chem Ecol 39:465–480

    Article  CAS  PubMed  Google Scholar 

  • Fraenkel GS (1959) The raison d'être of secondary plant substances. Science 129:1466–1470

    Article  CAS  PubMed  Google Scholar 

  • Futuyma DJ, Agrawal AA (2009) Macroevolution and the biological diversity of plants and herbivores. Proc Natl Acad Sci U S A 106:18054–18061

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeschke V, Gershenzon J, Vassão DG (2015) Metabolism of glucosinolates and their hydrolysis products in insect herbivores. In: Jetter R (ed) The formation, structure, and activity of phytochemicals, vol 45. Recent advances in phytochemistry. Springer, pp 163–194

  • Jeschke V, Gershenzon J, Vassão DG (2016) A mode of action of glucosinolate-derived isothiocyanates: detoxification depletes glutathione and cysteine levels with ramifications on protein metabolism in Spodoptera littoralis. Insect Biochem Mol Biol 71:37–48

    Article  CAS  PubMed  Google Scholar 

  • Klauck D, Luckner M (1995) In vitro measurement of digitalis-like compounds by inhibition of Na+/K+-ATPase: determination of the inhibitory effect. Pharmazie 50:395–399

    CAS  PubMed  Google Scholar 

  • Livshultz T et al (2018) Evolution of pyrrolizidine alkaloid biosynthesis in Apocynaceae: revisiting the defence de-escalation hypothesis. New Phytol 218:762–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malcom SB (1991) Cardenolide-mediated interactions between plants and herbivores. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites, second edition, Vol. I: the chemical participants. Academic, San Diego, pp 251–296

    Chapter  Google Scholar 

  • Manson JS, Rasmann S, Halitschke R, Thomson JD, Agrawal AA (2012) Cardenolides in nectar may be more than a consequence of allocation to other plant parts: a phylogenetic study of Asclepias. Funct Ecol 26:1100–1110

    Article  Google Scholar 

  • Marty MA, Krieger RI (1984) Metabolism of uscharidin, a milkweed cardenolide, by tissue homogenates of monarch butterfly larvae, Danaus plexippus L. J Chem Ecol 10:945–956

    Article  CAS  PubMed  Google Scholar 

  • Nelson CJ, Seiber JN, Brower LP (1981) Seasonal and intraplant variation of cardenolide content in the California milkweed, Asclepias eriocarpa, and implications for plant defense. J Chem Ecol 7:981–1010

    Article  CAS  PubMed  Google Scholar 

  • Nishida R (2002) Sequestration of defensive substances from plants by Lepidoptera. Annu Rev Entomol 47:57–92

    Article  CAS  PubMed  Google Scholar 

  • Petschenka G, Agrawal AA (2016) How herbivores coopt plant defenses: natural selection, specialization, and sequestration. Curr Opin Insect Sci 14:17–24

    Article  PubMed  Google Scholar 

  • Petschenka G, Fandrich S, Sander N, Wagschal V, Boppré M, Dobler S (2013) Stepwise evolution of resistance to toxic cardenolides via genetic substitutions in the Na+/K+-ATPase of milkweed butterflies (Lepidoptera: Danaini). Evolution 67:2753–2761

  • Petschenka G, Wagschal V, von Tschirnhaus M, Donath A, Dobler S (2017) Convergently evolved toxic secondary metabolites in plants drive the parallel molecular evolution of insect resistance. Am Nat 190:S29–S43

    Article  PubMed  Google Scholar 

  • Petschenka G, Fei CS, Araya JJ, Schröder S, Timmermann BN, Agrawal AA (2018) Relative selectivity of plant cardenolides for Na+/K+-ATPases from the monarch butterfly and non-resistant insects. Front Plant Sci 9:1424

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasmann S, Agrawal AA (2009) Plant defense against herbivory: progress in identifying synergism, redundancy, and antagonism between resistance traits. Curr Opin Plant Biol 12:473–478

    Article  CAS  PubMed  Google Scholar 

  • Rasmann S, Agrawal AA (2011) Latitudinal patterns in plant defense: evolution of cardenolides, their toxicity and induction following herbivory. Ecol Lett 14:476–483

    Article  PubMed  Google Scholar 

  • Rasmann S, Agrawal AA, Cook SC, Erwin AC (2009a) Cardenolides, induced responses, and interactions between above- and belowground herbivores of milkweed (Asclepias spp.). Ecology 90:2393–2404

    Article  PubMed  Google Scholar 

  • Rasmann S, Johnson MD, Agrawal AA (2009b) Induced responses to herbivory and jasmonate in three milkweed species. J Chem Ecol 35:1326–1334

    Article  CAS  PubMed  Google Scholar 

  • Reichstein T, Von Euw J, Parsons JA, Rothschild M (1968) Heart poisons in the monarch butterfly - some aposematic butterflies obtain protection from cardenolides present in their food plant. Science 161:861–866

    Article  CAS  PubMed  Google Scholar 

  • Richards LA, Glassmire AE, Ochsenrider KM, Smilanich AM, Dodson CD, Jeffrey CS, Dyer LA (2016) Phytochemical diversity and synergistic effects on herbivores. Phytochem Rev 15:1153–1166

    Article  CAS  Google Scholar 

  • Roeske CN, Seiber JN, Brower LP, Moffitt CM (1976) Milkweed cardenolides and their comparative processing by monarch butterflies (Danaus plexippus L.). In: Wallace JW, Mansell RL (eds) Biochemical interaction between plants and insects. Springer, Boston, pp 93–167

    Chapter  Google Scholar 

  • Romeo JT, Saunders JA, Barbosa P (eds) (1996) Phytochemical diversity and redundancy in ecological interactions. Plenum Press, New York

    Google Scholar 

  • Rosenthal GA, Hughes CG, Janzen DH (1982) L-Canavanine, a dietary nitrogen source for the seed predator Caryedes brasiliensis (Bruchidae). Science 217:353–355

    Article  CAS  PubMed  Google Scholar 

  • Seiber JN, Tuskes PM, Brower LP, Nelson CJ (1980) Pharmacodynamics of some individual milkweed cardenolides fed to larvae of the monarch butterfly (Danaus plexippus L.). J Chem Ecol 6:321–339

    Article  CAS  Google Scholar 

  • Seiber JN, Nelson CJ, Lee SM (1982) Cardenolides in the latex and leaves of seven Asclepias species and Calotropis procera. Phytochemistry 21:2343–2348

    Article  CAS  Google Scholar 

  • Seiber JN, Lee SM, Benson JM (1983) Cardiac glycosides (cardenolides) in species of Asclepias (Asclepiadaceae). In: Keeler RF, Tu AT (eds) Handbook of natural toxins, vol 1: plant and fungal toxins. Marcel Dekker, Amsterdam, pp 43–83

    Google Scholar 

  • Taussky HH, Shorr E (1953) A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem 202:675–685

    CAS  PubMed  Google Scholar 

  • Von Euw J, Fishelson L, Parsons JA, Reichstein T, Rothschild M (1967) Cardenolides (heart poisons) in a grasshopper feeding on milkweeds. Nature 214:35–39

    Article  Google Scholar 

  • Zalucki MP, Brower LP, Alonso A (2001) Detrimental effects of latex and cardiac glycosides on survival and growth of first-instar monarch butterfly larvae Danaus plexippus feeding on the sandhill milkweed Asclepias humistrata. Ecol Entomol 26:212–224

    Article  Google Scholar 

Download references

Acknowledgements

We thank Eamonn Patrick for technical support and performing parts of the experiment, Katalin Böröczky, Steve Broyles, Ron White, Hongxing Xu, Navid Movahed, and Georg Jander for help with the purification and HRMS analysis of labriformin, uscharin, and voruscharin, Ivan Keresztes for performing the NMR analysis of labriformin, and members of the Phytophagy Laboratory at Cornell University (www.herbivory.com) for discussion. This work was supported by German Research Foundation grant PE 2059/1-1 to GP, Swiss National Science Foundation grants P300P3-151191 and PZ00P3-161472 to TZ, and NSF-DEB-1118783 and a Templeton Foundation grant to AAA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Züst.

Electronic supplementary material

ESM 1

(PDF 407 kb)

ESM 2

(TXT 4 kb)

ESM 3

(TXT 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Züst, T., Petschenka, G., Hastings, A.P. et al. Toxicity of Milkweed Leaves and Latex: Chromatographic Quantification Versus Biological Activity of Cardenolides in 16 Asclepias Species. J Chem Ecol 45, 50–60 (2019). https://doi.org/10.1007/s10886-018-1040-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-018-1040-3

Keywords

Navigation