What Can Computational Modeling Tell Us about the Diversity of Odor-Capture Structures in the Pancrustacea?

Abstract

A major transition in the history of the Pancrustacea was the invasion of several lineages of these animals onto land. We investigated the functional performance of odor-capture organs, antennae with olfactory sensilla arrays, through the use of a computational model of advection and diffusion of odorants to olfactory sensilla while varying three parameters thought to be important to odor capture (Reynolds number, gap-width-to-sensillum-diameter ratio, and angle of the sensilla array with respect to oncoming flow). We also performed a sensitivity analysis on these parameters using uncertainty quantification to analyze their relative contributions to odor-capture performance. The results of this analysis indicate that odor capture in water and in air are fundamentally different. Odor capture in water and leakiness of the array are highly sensitive to Reynolds number and moderately sensitive to angle, whereas odor capture in air is highly sensitive to gap widths between sensilla and moderately sensitive to angle. Leakiness is not a good predictor of odor capture in air, likely due to the relative importance of diffusion to odor transport in air compared to water. We also used the sensitivity analysis to make predictions about morphological and kinematic diversity in extant groups of aquatic and terrestrial crustaceans. Aquatic crustaceans will likely exhibit denser arrays and induce flow within the arrays, whereas terrestrial crustaceans will rely on more sparse arrays with wider gaps and little-to-no animal-induced currents.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ambrosio LJ, Brooks WR (2011) Recognition and use of ascidian hosts, and mate acquisition by the symbiotic pea crab Tunicotheres moseri (Rathbun, 1918): the role of chemical, visual and tactile cues. Symbiosis 53(2):53–61

    Google Scholar 

  2. Anderson P, Patek S (2015) Mechanical sensitivity reveals evolutionary dynamics of mechanical systems. Proc Soc London B Biol Sci 282(1804):20143088

    CAS  Google Scholar 

  3. Atema J (1995) Chemical signals in the marine-environment - dispersal, detection, and temporal signal analysis. PNAS 92(1):62–66

    CAS  PubMed  Google Scholar 

  4. Bhalla APS, Bale R, Griffith BE, Patankar NA (2013) A unified mathematical framework and an adaptive numerical method for fluid-structure interaction with rigid, deforming, and elastic bodies. J Comput Phys 250:446–476

    Google Scholar 

  5. Bingman VP, Moore P (2017) Properties of the atmosphere in assisting and hindering animal navigation. In: Aeroecology, Springer, pp 119–143

    Google Scholar 

  6. Bliss D, Mantel L (1968) Adaptations of crustaceans to land - a summary and analysis of new findings. Am Zool 8(3):673–685

    Google Scholar 

  7. Cardé RT, Willis MA (2008) Navigational strategies used by insects to find distant, wind-borne sources of odor. J Chem Ecol 34(7):854–866

    PubMed  Google Scholar 

  8. Cheer A, Koehl M (1987a) Fluid-flow through filtering appendages of insects. IMA J Math Appl Med Biol 4(3):185–199

    Google Scholar 

  9. Cheer A, Koehl M (1987b) Paddles and rakes - fluid-flow through bristled appendages of small organisms. J Theor Biol 129(1):17–39

    Google Scholar 

  10. Childs H, Brugger E, Whitlock B, Meredith J, Ahern S, Pugmire D, Biagas K, Miller M, Harrison C, Weber GH, Krishnan H, Fogal T, Sanderson A, Garth C, Bethel EW, Camp D, Rúbel O, Durant M, Favre JM, Navrátil P (2012) VisIt: an end-user tool for visualizing and analyzing very large data. In: High Performance Visualization–Enabling Extreme-Scale Scientific Insight, pp 357–372

  11. Derby CD (1982) Structure and function of cuticular sensilla of the lobster Homarus americanus. J Crustac Biol 2(1):1–21

    Google Scholar 

  12. Derby CD, Weissburg MJ (2014) Nervous systems and control of behavior, vol 3, Natural History of the Crustaceans, chap The chemical senses and chemosensory ecology of crustaceans, pp 263–292

  13. Diaz H, Orihuela B, Forward R, Rittschof D (1999) Orientation of blue crab, Callinectes sapidus (Rathbun), megalopae: responses to visual and chemical cues. J Exp Mar Biol Ecol 233(1):25–40

    Google Scholar 

  14. Dickman B, Webster D, Page J, Weissburg M (2009) Three-dimensional odorant concentration measurements around actively tracking blue crabs. Limnol Oceanogr Methods 7:96–108

    CAS  Google Scholar 

  15. Gherardi F, Tricarico E (2007) Can hermit crabs recognize social partners by odors? And why? Mar Freshw Behav Physiol 40(3):201–212

    Google Scholar 

  16. Gherardi F, Tricarico E, Atema J (2005) Unraveling the nature of individual recognition by odor in hermit crabs. J Chem Ecol 31(12):2877–2796

    CAS  PubMed  Google Scholar 

  17. Ghiradella F, Case J, Cronshaw J (1968) Structure of aesthetascs in selected marine and terrestrial decapods - chemoreceptor morphology and environment. Am Zool 8(3):603–621

    CAS  PubMed  Google Scholar 

  18. Gleeson R (1980) Pheromone communication in the reproductive behavior of the blue crab, Callinectes sapidus. Mar Behav Physiol 7(2):119–134

    Google Scholar 

  19. Gleeson R, Hammar K, Smith P (2000a) Sustaining olfaction at low salinities: mapping ion flux associated with the olfactory sensilla of the blue crab Callinectes sapidus. J Exp Biol 203:3145–3152

    CAS  PubMed  Google Scholar 

  20. Gleeson R, McDowell L, Aldrich H, Hammar K, Smith P (2000b) Sustaining olfaction at low salinities: evidence for a paracellular route of ion movement from the hemolymph to the sensillar lymph in the olfactory sensilla of the blue crab Callinectes sapidus. Cell Tissue Res 301:423–431

    CAS  PubMed  Google Scholar 

  21. Goldman J, Patek S (2002) Two sniffing strategies in palinurid lobsters. J Exp Biol 205(24):3891–3902

    CAS  PubMed  Google Scholar 

  22. Greenaway P (2003) Terrestrial adaptations in the Anomura (Crustacea: Decapoda). Mem Mus Victoria 60(1):13–26

    Google Scholar 

  23. Griffith BE (2009) An accurate and efficient method for the incompressible Navier- stokes equations using the projection method as a preconditioner. J Comput Phys 228(20):7565–7595

    CAS  Google Scholar 

  24. Griffith BE, Lim S (2012) Simulating an elastic ring with bend and twist by an adaptive generalized immersed boundary method. Commun Comput Phys 12(2):433–461

    Google Scholar 

  25. Griffith BE, Peskin CS (2005) On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficiently smooth problems. J Comput Phys 208(1):75–105

    Google Scholar 

  26. Grünert U, Ache B (1988) Ultrastructure of the aesthetasc (olfactory) sensilla of the spiny lobster Panulirus argus. Cell Tissue Res 251:95–103

    Google Scholar 

  27. Hallberg E, Hansson BS (1999) Arthropod sensilla: morphology and phylogenetic considerations. Microsc Res Tech 47(6):428–439

    CAS  PubMed  Google Scholar 

  28. Hallberg E, Skog M (2011) Chemosensory sensilla in crustaceans. In: Breithaupt T, Theil M (eds) Chemical communication in crustaceans. Springer Verlag, New York, pp 103–121

    Google Scholar 

  29. Hansson B, Harzsch S, Knaden M, Stensmyr M (2011) The neural and behavioral basis of chemical communication in terrestrial crustaceans. In: Breithaupt T, Theil M (eds) Chemical communication in crustaceans. Springer Verlag, New York, pp 149–173

    Google Scholar 

  30. Harzsch S, Krieger J (2018) Crustacean olfactory systems: a comparative review and a crustacean perspective on insect olfactory systems. Prog Neurobiol 161:23–60

    CAS  PubMed  Google Scholar 

  31. Humphrey JA, Mellon D (2007) Analytical and numerical investigation of the flow past the lateral antennular flagellum of the crayfish Procambarus clarkii. J Exp Biol 210(17):2969–2978

    PubMed  Google Scholar 

  32. Kallemov B, Bhalla A, Griffith B, Donev A et al (2016) An immersed boundary method for rigid bodies. Comm Appl Math Comput Sci 11(1):79–141

    Google Scholar 

  33. Kamio M, Derby CD (2017) Finding food: how marine invertebrates use chemical cues to track and select food. Nat Prod Rep 34(5):514–528

    CAS  PubMed  Google Scholar 

  34. Keil TA, Steinbrecht RA (1984) Mechanosensitive and olfactory sensilla of insects. In: Insect ultrastructure, Springer, pp 477–516

    Google Scholar 

  35. Kepecs A, Powell I, Weissburg M (2006) The sniff as a unit of olfactory processing. Chem Senses 31(2):167–179

    PubMed  Google Scholar 

  36. Koehl M (2006) The fluid mechanics of arthropod sniffing in turbulent odor plumes. Chem Senses 31(2):93–105

    CAS  PubMed  Google Scholar 

  37. Koehl M (2011) Hydrodynamics of sniffing by crustaceans. In: Breithaupt T, Theil M (eds) Chemical communication in crustaceans. Springer Verlag, New York, pp 85–102

    Google Scholar 

  38. Koehl M, Koseff JR, Crimaldi JP, McCay MG, Cooper T, Wiley MB, Moore PA (2001) Lobster sniffing: antennule design and hydrodynamic filtering of information in an odor plume. Science 294(5548):1948–1951

    CAS  PubMed  Google Scholar 

  39. Krieger J, Braun P, Rivera NT, Schubart CD, Müller CH, Harzsch S (2015) Comparative analyses of olfactory systems in terrestrial crabs (Brachyura): evidence for aerial olfaction? PeerJ 3:e1433. https://doi.org/10.7717/peerj.1433

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Legall N, Poupin J (n.d.) Internet - CRUSTA: Database of Crustacea (Decapoda and Stomatopoda), with special interest for those collected in French overseas territories. http://crustiesfroverseas.free.fr/

  41. LeVeque RJ (2007) Finite difference methods for ordinary and partial differential equations. Society of Industrial and Applied Mathematics

  42. López MF, Armendáriz-Toledano F, Sámano JEM, Shibayama-Salas M, Zúñiga G (2014) Comparative study of the antennae of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae): Sensilla types, distribution and club shape. Ann Entomol Soc Am 107(6):1130–1143

    Google Scholar 

  43. Loudon C, Best B, Koehl M (1994) When does motion relative to neighboring surfaces alter the flow-through arrays of hairs. J Exp Biol 193:233–254

    CAS  PubMed  Google Scholar 

  44. Loudon C, Best B, Koehl M (2000) Sniffing by a silkworm moth: wing fanning enhances air penetration through and pheromone interception by antennae. J Exp Biol 203:2977–2990

    CAS  PubMed  Google Scholar 

  45. Mead K (2008) Do antennule and aesthetasc structure in the crayfish Orconectes virilis correlate with flow habitat? Integr Comp Biol 48(6):823–833

    PubMed  Google Scholar 

  46. Mead K, Koehl M (2000) Stomatopod antennule design: the asymmetry, sampling efficiency and ontogeny of olfactory flicking. J Exp Biol 203(24):3795–3808

    CAS  PubMed  Google Scholar 

  47. Mead K, Koehl M, O’Donnell M (1999) Stomatopod sniffing: the scaling of chemosensory sensillae and flicking behavior with body size. J Exp Mar Biol Ecol 241(2):235–261

    Google Scholar 

  48. Mellon D, Reidenbach M (2012) Fluid mechanical problems in crustacean active chemoreception. In: Barth F, Humphrey J, Srinivasan M (eds) Frontiers in sensing: from biology to engineering, Springer Verlag, Vienna, Austria

    Google Scholar 

  49. Moore P, Crimaldi J (2004) Odor landscapes and animal behavior: tracking odor plumes in different physical worlds. J Mar Syst 49:55–64

    Google Scholar 

  50. Moore P, Kraus-Epley K (2013) The impact of odor and ambient flow speed on the kinematics of the crayfish antennular flick: implications for sampling turbulent odor plumes. J Crustac Biol 33(6):772–783

    Google Scholar 

  51. Moore P, Scholz N, Atema J (1991) Chemical orientation of lobsters, Homarus americanus, in turbulent odor plumes. J Chem Ecol 17:1293–1307

    CAS  PubMed  Google Scholar 

  52. Muñoz MM, Anderson PS, Patek S (2017) Mechanical sensitivity and the dynamics of evolutionary rate shifts in biomechanical systems. Proc R Soc B 284(1847):20162325

    PubMed  Google Scholar 

  53. Murlis J, Elkinton JS, Cardé RT (1992) Odor plumes and how insects use them. Annu Rev Entomol 37(1):505–532

    Google Scholar 

  54. Nelson J, Mellon D, Reidenbach M (2013) Effects of antennule morphology and flicking kinematics on flow and odor sampling by the freshwater crayfish, Procambarus clarkii. Chem Senses 38:729–741

    PubMed  Google Scholar 

  55. Page J, Dickman B, Webster D, Weissburg M (2011a) Getting ahead: context- dependent responses to odorant filaments drive along-stream progress during odor tracking in blue crabs. J Exp Biol 214:1498–1512

    PubMed  Google Scholar 

  56. Page J, Weissburg M, Dickman D, Webster D (2011b) Staying the course: the role of chemical signal spatial properties in navigation through turbulent plumes. J Exp Biol 214:1513–1522

    PubMed  Google Scholar 

  57. Pardieck R, Orth R, Diaz R, Lipcius R (1999) Ontogenetic changes in habitat use by postlarvae and young juveniles of the blue crab. Mar Ecol Prog Ser 186:277–238

    Google Scholar 

  58. Patek S (2014) Biomimetics and evolution. Science 345(6203):1448–1449

    CAS  PubMed  Google Scholar 

  59. Peskin CS (2002) The immersed boundary method. Acta Numer 11:479–517

    Google Scholar 

  60. Pravin S, Reidenbach M (2013) Simultaneous sampling of flow and odorants by crustaceans can aid searches within a turbulent plume. Sensors 13:16591–16610

    PubMed  Google Scholar 

  61. Reidenbach M, Koehl M (2011) The spatial and temporal patterns of odors sampled by lobsters and crabs in a turbulent plume. J Exp Biol 214:3138–3153

    PubMed  Google Scholar 

  62. Reidenbach M, George N, Koehl M (2008) Antennule morphology and flicking kinematics facilitate odour sampling by the spiny lobster, Panulirus argus. J Exp Biol 211:2849–2858

    PubMed  Google Scholar 

  63. Rittschof D, Sutherland J (1986) Field studies on chemically mediated behavior in land hermit crabs: volatile and nonvolatile odors. J Chem Ecol 12(6):1273–1284

    CAS  PubMed  Google Scholar 

  64. Schmidt B, Ache B (1979) Olfaction: responses of a decapod crustacean are enhanced by flicking. Science 205:204–206

    Google Scholar 

  65. Schneider R, Price B, Moore P (1998) Antennal morphology as a physical filter of olfaction: temporal tuning of the antennae of the honeybee, Apis mellifera. J Insect Physiol 44:677–684

    CAS  PubMed  Google Scholar 

  66. Schuech R, Stacey M, Barad M, Koehl M (2012) Numerical simulations of odorant detection by biologically inspired sensor arrays. Bioinspiration Biomimetics 7(1):016001

    CAS  PubMed  Google Scholar 

  67. Sharma N, Chen Y, Patankar NA (2005) A distributed Lagrange multiplier based computational method for the simulation of particulate-stokes flow. Comput Methods Appl Mech Eng 194(45–47):4716–4730

    Google Scholar 

  68. Shu CW (1997) Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation law. Tech. rep., Institute for Computer Applications in Science and Engineering, NASA Langley Research Center

  69. Snow P (1973) Antennular activities of hermit crab, Pagurus alaskensis (Benedict). J Exp Biol 58:745–765

    Google Scholar 

  70. Sobol IM (1993) Sensitivity estimates for nonlinear mathematical models. Math Model Comput Experiment 1:407–414

    Google Scholar 

  71. Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55:271–280

    Google Scholar 

  72. Solari P, Sollai G, Masala C, Loy F, Palmas F, Sabatini A, Crnjar R (2017) Antennular morphology and contribution of aesthetascs in the detection of food- related compounds in the shrimp Palaemon adspersus Rathke, 1837 (Decapoda: Palaemonidae). Biol Bull 232(2):110–122

    PubMed  Google Scholar 

  73. Stacey M, Mead K, Koehl M (2002) Molecule capture by olfactory antennules: Mantis shrimp. J Math Biol 44(1):1–30

    PubMed  Google Scholar 

  74. Stensmyr M, Erland S, Hallberg E, Wallen R, Greenaway P, Hansson B (2005) Insect-like olfactory adaptations in the terrestrial giant robber crab. Curr Biol 15(2):116–121

    CAS  PubMed  Google Scholar 

  75. Strikwerda JC (2004) Finite difference schemes and partial differential equations. Society for Industrial and Applied Mathematics

  76. Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf 93(7):964–979

    Google Scholar 

  77. Team Research Development (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, http://www.r-project.org/

  78. Wainwright PC (2007) Functional versus morphological diversity in macroevolution. Annu Rev Ecol Evol Syst 38:381–401

    Google Scholar 

  79. Wainwright P, Alfaro M, Bolnick D, Hulsey C (2005) Many-to-one mapping to form to function: a general principle in organismal design? Integr Comp Biol 45:256–262

    PubMed  Google Scholar 

  80. Waldrop L (2013) Ontogenetic scaling of the olfactory antennae and flicking behavior of the shore crab, Hemigrapsus oregonensis. Chem Senses 38(6):541–550

    PubMed  Google Scholar 

  81. Waldrop L, Koehl M (2016) Do terrestrial hermit crabs sniff? Air flow and odorant capture by flicking antennules. J R Soc Interface 13(114):20150850. https://doi.org/10.1098/rsif.2015.0850

    Article  PubMed  PubMed Central  Google Scholar 

  82. Waldrop L, Bantay R, Nguyen Q (2014) Scaling of olfactory antennae of the terrestrial hermit crabs Coenobita rugosus and Coenobita perlatus during ontogeny. PeerJ 2:e535. https://doi.org/10.7717/peerj.535

    Article  PubMed  PubMed Central  Google Scholar 

  83. Waldrop L, Hann M, Henry A, Kim A, Punjabi A, Koehl M (2015a) Ontogenetic changes in the olfactory antennules of the shore crab, Hemigrapsus oregonensis, maintain sniffing function during growth. J R Soc Interface 12:20141077

    PubMed  PubMed Central  Google Scholar 

  84. Waldrop L, Reidenbach M, Koehl M (2015b) Flexibility of crab chemosensory sensilla enables flicking antennules to sniff. Biol Bull 229(2):185–198

    CAS  PubMed  Google Scholar 

  85. Waldrop L, Miller L, Khatri S (2016) A tale of two antennules: the performance of crab odour-capture organs in air and water. J R Soc Interface 13:20160615

    PubMed  PubMed Central  Google Scholar 

  86. Webster D, Weissburg M (2009) The hydrodynamics of chemical cues among aquatic organisms. Anne Rev Fluid Mech 41:73–90

    Google Scholar 

  87. Weissburg M (2000) The fluid dynamical context of chemosensory behavior. Biol Bull 198(2):188–202

    CAS  PubMed  Google Scholar 

  88. Weissburg M (2011) Chemical communication in crustaceans, Springer Verlag, New York, chap Waterborne Chemical Communication: Stimulus Dispersal Dynamics and Orientation Strategies in Crustaceans, pp 63–83

  89. Weissburg M, Atkins L, Berkenkamp K, Mankin D (2012) Dine or dash? Turbulence inhibits blue crab navigation in attractive–aversive odor plumes by altering signal structure encoded by the olfactory pathway. J Exp Biol 215:4175–4182

    PubMed  Google Scholar 

  90. Wellins CA, Rittschof D, Wachowiak M (1989) Location of volatile odor sources by ghost Crabocypode quadrata (Fabricius). J Chem Ecol 15(4):1161–1169

    CAS  PubMed  Google Scholar 

  91. Wiener N (1938) The homogeneous chaos. Am J Math 60(4):897–936

    Google Scholar 

  92. Willis MA, Arbas EA (1991) Odor-modulated upwind flight of the sphinx moth, Manduca sexta. J Comp Physiol A 169(4):427–440

    CAS  PubMed  Google Scholar 

  93. Xiu D, Karniadakis G (2002) Modeling uncertainty in flow simulations via generalized polynomial chaos. J Comput Phys 187:137–167

    Google Scholar 

  94. Zacharuk RY (1980) Ultrastructure and function of insect chemosensilla. Annu Rev Entomol 25:27–47

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the following funding sources: funds from the New Mexico Institute of Mining and Technology to L. Waldrop; computational al- locations to L. Waldrop from the Extreme Scientific and Engineering Discovery Environment (XSEDE) TG-CDA160015 and TG-BIO170090; and funding to S. Khatri from the National Science Foundation Physics of Living Systems #1505061.

The authors wish to thank Swayamjit Ray, Anjel Helms, and Loren Rivera for organizing the “Chemical Ecology in the New Era of Technology” symposium; Laura Miller, Amneet Bhalla, and Boyce Griffith for help with IBAMR; David O’Neal at Pittsburgh Supercomputing Center for aid in computing; Sheila Patek, Philip Anderson, Jonathan Rader, and Dennis Evangelista for influential discussions regarding evolutionary biomechanics and two anonymous reviewers for comments that improved the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lindsay D. Waldrop.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Waldrop, L.D., He, Y. & Khatri, S. What Can Computational Modeling Tell Us about the Diversity of Odor-Capture Structures in the Pancrustacea?. J Chem Ecol 44, 1084–1100 (2018). https://doi.org/10.1007/s10886-018-1017-2

Download citation

Keywords

  • Olfaction
  • Sensilla
  • Insect
  • Computational modeling
  • Fluid dynamics
  • Sniffing