Abstract
Pyrrolizidine alkaloids (PAs) are a typical class of plant secondary metabolites that are constitutively produced as part of the plant’s chemical defense. While roots are a well-established site of pyrrolizidine alkaloid biosynthesis, comfrey plants (Symphytum officinale; Boraginaceae) have been shown to additionally activate alkaloid production in specialized leaves and accumulate PAs in flowers during a short developmental stage in inflorescence development. To gain a better understanding of the accumulation and role of PAs in comfrey flowers and fruits, we have dissected and analyzed their tissues for PA content and patterns. PAs are almost exclusively accumulated in the ovaries, while petals, sepals, and pollen hardly contain PAs. High levels of PAs are detectable in the fruit, but the elaiosome was shown to be PA free. The absence of 7-acetyllycopsamine in floral parts while present in leaves and roots suggests that the additional site of PA biosynthesis provides the pool of PAs for translocation to floral structures. Our data suggest that PA accumulation has to be understood as a highly dynamic system resulting from a combination of efficient transport and additional sites of synthesis that are only temporarily active. Our findings are further discussed in the context of the ecological roles of PAs in comfrey flowers.
This is a preview of subscription content, access via your institution.



References
Abd El-Mawla AMA (2010) Effect of certain elicitors on production of pyrrolizidine alkaloids in hairy root cultures of Echium rauwolfii. Pharmazie 65:224–226. https://doi.org/10.1691/ph.2010.9652
Anke S, Niemüller D, Moll S, Hänsch R, Ober D (2004) Polyphyletic origin of pyrrolizidine alkaloids within the Asteraceae. Evidence from differential tissue expression of homospermidine synthase. Plant Physiol 136:4037–4047. https://doi.org/10.1104/pp.104.052357
Anke S, Gonde D, Kaltenegger E, Hansch R, Theuring C, Ober D (2008) Pyrrolizidine alkaloid biosynthesis in Phalaenopsis orchids: developmental expression of alkaloid-specific homospermidine synthase in root tips and young flower buds. Plant Physiol 148:751–760. https://doi.org/10.1104/pp.108.124859
Betteridge K, Cao Y, Colegate SM (2005) Improved method for extraction and LC-MS analysis of pyrrolizidine alkaloids and their N-oxides in honey: application to Echium vulgare honeys. J Agric Food Chem 53:1894–1902. https://doi.org/10.1021/jf0480952
Boppré M, Colegate SM, Edgar JA, Fischer OW (2008) Hepatotoxic pyrrolizidine alkaloids in pollen and drying-related implications for commercial processing of bee pollen. J Agric Food Chem 56:5662–5672. https://doi.org/10.1021/jf800568u
Brauchli J, Luthy J, Zweifel U, Schlatter C (1982) Pyrrolizidine alkaloids from Symphytum officinale L. and their percutaneous absorption in rats. Experientia 38:1085–1087. https://doi.org/10.1007/BF01955382
Catalfamo JL, Martin WB, Birecka H (1982) Accumulation of alkaloids and their necines in Heliotropium curassavicum, H. spathulatum, and H. indicum. Phytochemistry 21:2669–2676. https://doi.org/10.1016/0031-9422(82)83096-3
Couet CE, Crews C, Hanley AB (1996) Analysis, separation, and bioassay of pyrrolizidine alkaloids from comfrey (Symphytum officinale). Nat Toxins 4:163–167. https://doi.org/10.1002/19960404NT3
Cramer L, Schiebel H-M, Ernst L, Beuerle T (2013) Pyrrolizidine alkaloids in the food chain: development, validation, and application of a new HPLC-ESI-MS/MS sum parameter method. J Agric Food Chem 61:11382–11391. https://doi.org/10.1021/jf403647u
Frölich C, Hartmann T, Ober D (2006) Tissue distribution and biosynthesis of 1,2-saturated pyrrolizidine alkaloids in Phalaenopsis hybrides (Orchidaceae). Phytochemistry 67:1493–1502. https://doi.org/10.1016/j.phytochem.2006.05.031
Frölich C, Ober D, Hartmann T (2007) Tissue distribution, core biosynthesis and diversification of pyrrolizidine alkaloids of the lycopsamine type in three Boraginaceae species. Phytochemistry 68:1026–1037. https://doi.org/10.1016/j.phytochem.2007.01.002
Ge-ling Z, Roedl H, Kamelin R (1995) Boraginaceae. In: Flora of China, vol 16 (Gentianaceae through Boraginaceae). Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis., pp 329–427
Hare JF, Eisner T (1993) Pyrrolizidine alkaloid deters ant predators of Utetheisa ornatrix eggs: effects of alkaloid concentration, oxidation state, and prior exposure of ants to alkaloid-laden prey. Oecologia 96:9–18. https://doi.org/10.1007/BF00318024
Hartmann T, Ober D (2000) Biosynthesis and metabolism of pyrrolizidine alkaloids in plants and specialized insect herbivores. In: Leeper FJ, Vederas JC (eds) Topics in current chemistry, vol 209. Springer, Berlin, pp 207–244. https://doi.org/10.1007/3-540-48146-X_5
Hartmann T, Ober D (2008) Defense by pyrrolizidine alkaloids: developed by plants and recruited by insects. In: Schaller A (ed) Induced plant resistance to herbivory. Springer Science+Business Media B.V, Berlin, pp 213–231. https://doi.org/10.1007/978-1-4020-8182-8_10
Hartmann T, Witte L (1995) Chemistry, biology and chemoecology of the pyrrolizidine alkaloids. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives, vol 9. Pergamon Press, Oxford, pp 155–233. https://doi.org/10.1016/B978-0-08-042089-9.50011-5
Hartmann T, Zimmer M (1986) Organ-specific distribution and accumulation of pyrrolizidine alkaloids during the life history of two annual Senecio species. J Plant Physiol 122:67–80. https://doi.org/10.1016/S0176-1617(86)80085-2
Irmer S, Podzun N, Langel D, Heidemann F, Kaltenegger E, Schemmerling B, Geilfus CM, Zörb C, Ober D (2015) New aspect of plant-rhizobia interaction: alkaloid biosynthesis in Crotalaria depends on nodulation. Proc Natl Acad Sci U S A 112:4164–4169. https://doi.org/10.1073/pnas.1423457112
Iyengar VK, Eisner T (1999) Female choice increases offspring fitness in an arctiid moth (Utetheisa ornatrix). Proc Natl Acad Sci U S A 96:15013–15016. https://doi.org/10.1073/pnas.96.26.15013
Johnson AE, Molyneux RJ, Merrill GB (1985) Chemistry of toxic range plants. Variation in pyrrolizidine alkaloid content of Senecio, Amsinckia, and Crotalaria species. J Agric Food Chem 33:50–55. https://doi.org/10.1021/jf00061a015
Kaltenegger E, Eich E, Ober D (2013) Evolution of homospermidine synthase in the Convolvulaceae: a story of gene duplication, gene loss, and periods of various selection pressures. Plant Cell 25:1213–1227. https://doi.org/10.1105/tpc.113.109744
Kempf M, Beuerle T, Bühringer M, Denner M, Trost D, von der Ohe K, Bhavanam VBR, Schreier P (2008) Pyrrolizidine alkaloids in honey: risk analysis by gas chromatography-mass spectrometry. Mol Nutr Food Res 52:1193–1200. https://doi.org/10.1002/mnfr.200800051
Kempf M, Reinhard A, Beuerle T (2010) Pyrrolizidine alkaloids (PAs) in honey and pollen - legal regulation of PA levels in food and animal feed required. Mol Nutr Food Res 54:158–168. https://doi.org/10.1002/mnfr.200900529
Kováts E (1958) Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, aldehyde und ketone. Helv Chim Acta 41:1915–1932
Kowalczyk E, Kwiatek K (2017) Determination of pyrrolizidine alkaloids in selected feed materials with gas chromatography-mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 34:853–863. https://doi.org/10.1080/19440049.2017.1302099
Kruse LH, Stegemann T, Sievert C, Ober D (2017) Identification of a second site of pyrrolizidine alkaloid biosynthesis in comfrey to boost plant defense in floral stage. Plant Physiol 174:47–55. https://doi.org/10.1104/pp.17.00265
Langel D, Ober D, Pelser P (2011) The evolution of pyrrolizidine alkaloid biosynthesis and diversity in the Senecioneae. Phytochem Rev 10:3–74. https://doi.org/10.1007/s11101-010-9184-y
Luebert F, Cecchi L, Frohlich MW, Gottschling M, Guilliams CM, Hasenstab-Lehman KE, Hilger HH, Miller JS, Mittelbach M, Nazaire M, Nepi M, Nocentini D, Ober D, Olmstead RG, Selvi F, Simpson MG, Sutorý K, Valdés B, Walden GK, Weigend M (2016) Familial classification of the Boraginales. Taxon 65:502–522. https://doi.org/10.12705/653.5
McKey D (1979) The distribution of secondary compounds within plants. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interaction with secondary plant metabolites. Academic Press, New York, pp 55–133
Moll S, Anke S, Kahmann U, Hänsch R, Hartmann T, Ober D (2002) Cell-specific expression of homospermidine synthase, the entry enzyme of the pyrrolizidine alkaloid pathway in Senecio vernalis, in comparison with its ancestor, deoxyhypusine synthase. Plant Physiol 130:47–57. https://doi.org/10.1104/pp.004259
Mudge EM, Jones AMP, Brown PN (2015) Quantification of pyrrolizidine alkaloids in North American plants and honey by LC-MS: single laboratory validation. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 32:2068–2074. https://doi.org/10.1080/19440049.2015.1099743
Mütterlein R, Arnold C-G (1993) Investigations concerning the content and the pattern of pyrrolizidine alkaloids in Symphytum officinale L. (Comfrey) Pharm Ztg 138:119–125
Niemüller D, Reimann A, Ober D (2012) Distinct cell-specific expression of homospermidine synthase involved in pyrrolizidine alkaloid biosynthesis in three species of the Boraginales. Plant Physiol 159:920–929. https://doi.org/10.1104/pp.112.195024
Ober D, Hartmann T (1999) Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase. Proc Natl Acad Sci U S A 96:14777–14782. https://doi.org/10.1073/pnas.96.26.14777
Peters M, Oberrath R, Böhning-Gaese K (2003) Seed dispersal by ants: are seed preferences influenced by foraging strategies or historical constraints? Flora 198:413–420. https://doi.org/10.1078/0367-2530-1210114
Pfister JA, Molyneux RJ, Baker DC (1992) Pyrrolizidine alkaloid content of houndstongue (Cynoglossum officinale L). J Range Manag 45:254–256. https://doi.org/10.2307/4002973
Reimann A, Nurhayati N, Backenköhler A, Ober D (2004) Repeated evolution of the pyrrolizidine alkaloid-mediated defense system in separate angiosperm lineages. Plant Cell 16:2772–2784. https://doi.org/10.1105/tpc.104.023176
Sander H, Hartmann T (1989) Site of synthesis, metabolism and translocation of senecionine N-oxide in cultured roots of Senecio erucifolius. Plant Cell Tissue Organ Cult 18:19–32. https://doi.org/10.1007/BF00033462
Sievert C, Beuerle T, Hollmann J, Ober D (2015) Single cell subtractive transcriptomics for identification of cell-specifically expressed candidate genes of pyrrolizidine alkaloid biosynthesis. Phytochemistry 117:17–24. https://doi.org/10.1016/j.phytochem.2015.05.003
Smith LW, Culvenor CC (1981) Plant sources of hepatotoxic pyrrolizidine alkaloids. J Nat Prod 44:129–152
Staiger C (2012) Comfrey: a clinical overview. Phytother Res 26:1441–1448. https://doi.org/10.1002/ptr.4612
Stegemann T, Kruse LH, Ober D (2018) Radioactive tracer feeding experiments and product analysis to determine the biosynthetic capability of Comfrey (Symphytum officinale) leaves for pyrrolizidine alkaloids. Bio-protocol 8:e2719. https://doi.org/10.21769/BioProtoc.2719
van Dam NM, van der Meijden E, Verpoorte R (1993) Induced responses in three alkaloid-containing plant species. Oecologia 95:425–430. https://doi.org/10.1007/BF00320998
van Dam NM, Witte L, Theuring C, Hartmann T (1995) Distribution, biosynthesis and turnover of pyrrolizidine alkaloids in Cynoglossum officinale. Phytochemistry 39:287–292. https://doi.org/10.1016/0031-9422(94)00944-O
Weigend M, Selvi F, Thomas DC, Hilger HH (2016) Boraginaceae. In: Kadereit JW, Bittrich V (eds) Flowering Plants. Eudicots. Aquifoliales, Boraginales, Bruniales, Dipsacales, Escalloniales, Garryales, Paracryphiales, Solanales (except Convolvulaceae), Icacinaceae, Metteniusaceae, Vahliaceae, vol XIV. Springer, Switzerland, pp 41–102. https://doi.org/10.1007/978-3-319-28534-4_5
Witte L, Ehmke A, Hartmann T (1990) Interspecific flow of pyrrolizidine alkaloids; from plants via aphids to ladybirds. Naturwissenschaften 77:540–543. https://doi.org/10.1007/BF01139268
Acknowledgements
We thank Karina Thöle, Brigitte Schemmerling, and Margret Doose for support in the laboratory. We thank Dr. Dorothee Langel for the foto stacking of Symphytum pollen and Britta Milewski for discussions on the manuscript.
Funding
This work was supported by a grant of the Deutsche Forschungsgemeinschaft to DO (OB 162/7–2).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Electronic supplementary material
ESM 1
(DOCX 21Â kb)
Rights and permissions
About this article
Cite this article
Stegemann, T., Kruse, L.H., Brütt, M. et al. Specific Distribution of Pyrrolizidine Alkaloids in Floral Parts of Comfrey (Symphytum officinale) and its Implications for Flower Ecology. J Chem Ecol 45, 128–135 (2019). https://doi.org/10.1007/s10886-018-0990-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10886-018-0990-9