Journal of Chemical Ecology

, Volume 44, Issue 9, pp 838–850 | Cite as

Reproductive Dominance Strategies in Insect Social Parasites

  • Patrick LhommeEmail author
  • Heather M. Hines
Review Article


In eusocial insects, the high cost of altruistic cooperation between colony members has favoured the evolution of cheaters that exploit social services of other species. In the most extreme forms of insect social parasitism, which has evolved multiple times across most social lineages, obligately parasitic species invade the nests of social species and manipulate the workforce of their hosts to rear their own reproductive offspring. As alien species that have lost their own sociality, these social parasites still face social challenges to infiltrate and control their hosts, thus providing independent replicates for understanding the mechanisms essential to social dominance. This review compares socially parasitic insect lineages to find general trends and build a hypothetical framework for the means by which social parasites achieve reproductive dominance. It highlights how host social organization and social parasite life history traits may impact the way they achieve reproductive supremacy, including the potential role of chemical cues. The review discusses the coevolutionary dynamics between host and parasite during this process. Altogether, this review emphasizes the value of social parasites for understanding social evolution and the need for future research in this area.


Inquilinism Fertility signal Queen pheromone Coevolution Eusociality 



We would like to acknowledge Etya Amsalem and Christina Grozinger for helpful discussion on this topic and to Li Tian, Sarthok Rahman, Briana Ezray, Shelby Kilpatrick, and Guillaume Ghisbain, and the external reviewers for many helpful comments. This research was enabled by funding through the Penn State Eberly College of Sciences.


  1. Achenbach A, Foitzik S (2009) First evidence for slave rebellion: enslaved ant workers systematically kill the brood of their social parasite Protomognathus americanus. Evolution 63:1068–1075PubMedCrossRefGoogle Scholar
  2. Alford DV (1975) Bumblebees. Davis-Poynter Ltd, LondonGoogle Scholar
  3. Allies AB, Bourke AFG, Franks NR (1986) Propaganda substances in the cuckoo ant Leptothorax kutteri and the slave-maker Harpagoxenus sublaevis. J Chem Ecol 12:1285–1293PubMedCrossRefGoogle Scholar
  4. Amsalem E, Orlova M, Grozinger CM (2015) A conserved class of queen pheromones? Re-evaluating the evidence in bumblebees (Bombus impatiens). Proc R Soc Lond B Biol Sci 282:20151800Google Scholar
  5. Bagnères A, Lorenzi M, Dusticier G et al (1996) Chemical usurpation of a nest by paper wasp parasites. Science 272:889–892PubMedCrossRefGoogle Scholar
  6. Barden P, Grimaldi DA (2016) Adaptive radiation in socially advanced stem-group ants from the cretaceous. Curr Biol 26:515–521PubMedCrossRefGoogle Scholar
  7. Berthelot K, Ramon Portugal F, Jeanson R (2017) Caste discrimination in the ant Odontomachus hastatus: what role for behavioral and chemical cues? J Insect Physiol 98:291–300PubMedCrossRefGoogle Scholar
  8. Brandt M, Foitzik S, Fischer-Blass B, Heinze J (2005) The coevolutionary dynamics of obligate ant social parasite systems-between prudence and antagonism. Biol Rev Camb Philos Soc 80:251–267PubMedCrossRefGoogle Scholar
  9. Brandt M, Fischer-Blass B, Heinze J, Foitzik S (2007) Population structure and the co-evolution between social parasites and their hosts. Mol Ecol 16:2063–2078PubMedCrossRefGoogle Scholar
  10. Brasero N, Martinet B, Lecocq T et al (2018) The cephalic labial gland secretions of two socially parasitic bumblebees Bombus hyperboreus (Alpinobombus) and Bombus inexspectatus (Thoracobombus) question their inquiline strategy. Insect Sci 25:75–86PubMedCrossRefGoogle Scholar
  11. Brockmann HJ (1993) Parasitizing conspecifics: comparisons between Hymenoptera and birds. Trends Ecol Evol 8:2–4CrossRefGoogle Scholar
  12. Brunner E, Kroiss J, Trindl A, Heinze J (2011) Queen pheromones in Temnothorax ants: control or honest signal? BMC Evol Biol 11:55PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bruschini C, Cervo R (2011) Venom volatiles of the paper wasp social parasite Polistes sulcifer elicit intra-colonial aggression on the nest of the host species Polistes dominulus. Insect Soc 58:383–390CrossRefGoogle Scholar
  14. Buschinger A (1986) Evolution of social parasitism in ants. Trends Ecol Evol 1:155–160PubMedCrossRefGoogle Scholar
  15. Buschinger A (2009) Social parasitism among ants: a review (Hymenoptera: Formicidae). Myrmecol News 12:219–235Google Scholar
  16. Buschinger A, Klump B (1988) Novel strategy of host-colony exploitation in a permanently parasitic ant, Doronomyrmex goesswaldi. Naturwissenschaften 75:577–578CrossRefGoogle Scholar
  17. Camazine S (2003) Self-organization in biological systems. Princeton University Press, PrincetonGoogle Scholar
  18. Carpenter JM, Perera EP (2006) Phylogenetic relationships among yellowjackets and the evolution of social parasitism (Hymenoptera: Vespidae, Vespinae). Am Mus Novit 3507:1CrossRefGoogle Scholar
  19. Cervo R (1990) II parassitismo sociale nei Polistes (Hymenoptera,Vespidae). Doctorate Thesis, University of FlorenceGoogle Scholar
  20. Cervo R (1994) Morphological adaptations to the parasitic life in Polistes sulcifer and Polistes atrimandibularis (Hymenoptera, Vespidae). Ethol Ecol Evol 3:61–66CrossRefGoogle Scholar
  21. Cervo R (2006) Polistes wasps and their social parasites: an overview. Ann Zool Fenn 43:531–549Google Scholar
  22. Cervo R, Lorenzi MC (1996) Behaviour in usurpers and late joiners of Polistes biglumis bimaculatus (Hymenoptera, Vespidae). Insect Soc 43:255–266CrossRefGoogle Scholar
  23. Cervo R, Lorenzi MC, Turillazzi S (1990a) Non aggressive usurpation of the nest of Polistes biglumis bimaculatus by the social parasite Sulcopolistes atrimandibularis (Hymenoptera, Vespidae). Insect Soc 37:333–347Google Scholar
  24. Cervo R, Lorenzi MC, Turillazzi S (1990b) Sulcopolistes atrimandibularis, social parasite and predator of an Alpine Polistes (Hymenoptera, Vespidae). Ethology 86:71–78Google Scholar
  25. Cervo R, Bertocci F, Turillazzi S (1996) Olfactory cues in host nest detection by the social parasite Polistes sulcifer (Hymenoptera, Vespidae). Behav Process 36:213–218CrossRefGoogle Scholar
  26. Cervo R, Macinai V, Dechigi F, Turillazzi S (2004) Fast growth of immature brood in a social parasite wasp: a convergent evolution between avian and insect cuckoos. Am Nat 164:814–820Google Scholar
  27. Chernenko A, Helanterä H, Sundström L (2011) Egg recognition and social parasitism in Formica ants. Ethology 117:1081–1092CrossRefGoogle Scholar
  28. Cini A, Bruschini C, Signorotti L, Pontieri L, Turillazzi S, Cervo R (2011a) The chemical basis of host nest detection and chemical integration in a cuckoo paper wasp. J Exp Biol 214:3698–3703PubMedCrossRefGoogle Scholar
  29. Cini A, Bruschini C, Poggi L, Cervo R (2011b) Fight or fool? Physical strength, instead of sensory deception, matters in host nest invasion by a wasp social parasite. Anim Behav 81:1139–1145CrossRefGoogle Scholar
  30. Cini A, Nieri R, Dapporto L et al (2014) Almost royal: incomplete suppression of host worker ovarian development by a social parasite wasp. Behav Ecol Sociobiol 68:467–475CrossRefGoogle Scholar
  31. Cini A, Patalano S, Segonds-Pichon A, Busby GB, Cervo R, Sumner S (2015) Social parasitism and the molecular basis of phenotypic evolution. Front Genet 6:32PubMedPubMedCentralCrossRefGoogle Scholar
  32. d’Ettorre P, Heinze J (2001) Sociobiology of slave-making ants. Acta Ethol 3:67–82CrossRefGoogle Scholar
  33. d’Ettorre P, Errard C, Ibarra F et al (2000) Sneak in or repel your enemy: Dufour’s gland repellent as a strategy for successful usurpation in the slave-maker Polyergus rufescens. Chemoecology 10:135–142CrossRefGoogle Scholar
  34. Dapporto L, Cervo R, Sledge MF, Turillazzi S (2004) Rank integration in dominance hierarchies of host colonies by the paper wasp social parasite Polistes sulcifer (Hymenoptera, Vespidae). J Insect Physiol 50:217–223PubMedCrossRefGoogle Scholar
  35. Dapporto L, Santini A, Dani FR, Turillazzi S (2007) Workers of a Polistes paper wasp detect the presence of their queen by chemical cues. Chem Senses 32:795–802PubMedCrossRefGoogle Scholar
  36. Dapporto L, Bruschini C, Cervo R, Dani FR, Jackson DE, Turillazzi S (2010) Timing matters when assessing dominance and chemical signatures in the paper wasp Polistes dominulus. Behav Ecol Sociobiol 64:1363–1365CrossRefGoogle Scholar
  37. Emery C (1909) Über den Ursprung der dulotischen, parasitischen und myrmekophilen Ameisen. Biol Cent 29:352–362Google Scholar
  38. Endler A, Liebig J, Schmitt T et al (2004) Surface hydrocarbons of queen eggs regulate worker reproduction in a social insect. Proc Natl Acad Sci U S A 101:2945–2950PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fanelli D, Cervo R, Turillazzi S (2001) Three new host species of the social wasp parasite, Polistes atrimandibularis (Hymenoptera, Vespidae). Insect Soc 48:352–354CrossRefGoogle Scholar
  40. Fisher RM (1983) Inability of the social parasite Psithyrus ashtoni to suppress ovarian development in workers of Bombus affinis (Hymenoptera : Apidae). J Kansas Entomol Soc 56:69–73Google Scholar
  41. Fisher RM (1984) Dominance by a bumble bee social parasite (Psithyrus citrinus) over workers of its host (Bombus impatiens). Anim Behav 32:304–305CrossRefGoogle Scholar
  42. Fisher RM (1988) Observations on the behaviours of three European cuckoo bumble bee species (Psithyrus). Insect Soc 35:341–354CrossRefGoogle Scholar
  43. Fisher RM, Sampson BJ (1992) Morphological specializations of the bumble bee social parasite Psithyrus ashtoni. Can Entomol 124:69–77CrossRefGoogle Scholar
  44. Fittkau EJ, Klinge H (1973) On biomass and trophic structure of the central Amazonian rain forest ecosystem. Biotropica 5:2–14CrossRefGoogle Scholar
  45. Foitzik S, Deheer CJ, Hunjan DN, Herbers JM (2001) Coevolution in host-parasite systems: behavioural strategies of slave-making ants and their coevolution in host-parasite systems: behavioural strategies of slave-making ants and their hosts. Proc R Soc Lond B Biol Sci 268:1139–1146CrossRefGoogle Scholar
  46. Foster KR, Ratnieks FL (2001) Convergent evolution of worker policing by egg eating in the honeybee and common wasp. Proc R Soc Lond B Biol Sci 268:169–174CrossRefGoogle Scholar
  47. Franks N, Blum M, Smith R-K, Allies AB (1990) Behavior and chemical disguise of cuckoo ant Leptothorax kutteri in relation to its host Leptothorax acervorum. J Chem Ecol 16:1431–1444PubMedCrossRefGoogle Scholar
  48. Fucini S, Lorenzi M (2004) Behavioural counter-adaptations to social parasites in Polistes biglumis, host of P. atrimandibularis Hymenoptera, Vespidae. Insect Soc Life 5:27–29Google Scholar
  49. Fucini S, Uboni A, Lorenzi MC (2014) Cuckoo wasps manipulate foraging and resting activities in their hosts. Behav Ecol Sociobiol 68:1753–1759CrossRefGoogle Scholar
  50. Green JP, Almond EJ, Williamson J, Field J (2016) Regulation of host colony activity by the social parasite Polistes semenowi. Insect Soc 63:385–393CrossRefGoogle Scholar
  51. Greene A, Akre RD, Landolt PJ (1978) Behavior of the yellowjacket social parasite, Dolichovespula arctica (Rohwer) (Hymenoptera: Vespidae). Melanderia 29:1–28Google Scholar
  52. Guillem RM, Drijfhout F, Martin SJ (2014) Chemical deception among ant social parasites. Curr Zool 60:62–75CrossRefGoogle Scholar
  53. Heinze J, d’Ettorre P (2009) Honest and dishonest communication in social Hymenoptera. J Exp Biol 212:1775–1779Google Scholar
  54. Hines HM, Cameron SA (2010) The phylogenetic position of the bumble bee inquiline Bombus inexspectatus and implications for the evolution of social parasitism. Insect Soc 57:379–383CrossRefGoogle Scholar
  55. Hölldobler B, Wilson EO (1990) The ants. Springer Verlag, BerlinCrossRefGoogle Scholar
  56. Holman L (2012) Costs and constraints conspire to produce honest signaling: insights from an ant queen pheromone. Evolution 66:2094–2105PubMedCrossRefGoogle Scholar
  57. Holman L, Jørgensen CG, Nielsen J, d'Ettorre P (2010) Identification of an ant queen pheromone regulating worker sterility. Proc R Soc Lond B Biol Sci 277:3793–3800CrossRefGoogle Scholar
  58. Holman L, Lanfear R, d’Ettorre P (2013) The evolution of queen pheromones in the ant genus Lasius. J Evol Biol 26:1549–1558PubMedCrossRefGoogle Scholar
  59. Holman L, Hanley B, Millar JG (2016) Highly specific responses to queen pheromone in three Lasius ant species. Behav Ecol Sociobiol 70:387–392CrossRefGoogle Scholar
  60. Holman L, van Zweden JS, Oliveira RC, van Oystaeyen A, Wenseleers T (2017) Conserved queen pheromones in bumblebees: a reply to Amsalem et al. PeerJ 5:e3332PubMedPubMedCentralCrossRefGoogle Scholar
  61. Jeanne RL (1977) Behavior of the obligate social parasite Vespula arctica (Hymenoptera: Vespidae). J Kansas Entomol Soc 50:541–557Google Scholar
  62. Jha S, Casey-Ford RG, Pedersen JS, Platt TG, Cervo R, Queller DC, Strassmann JE (2006) The queen is not a pacemaker in the small-colony wasps Polistes instabilis and P. dominulus. Anim Behav 71:1197–1203CrossRefGoogle Scholar
  63. Johnson RA, Parker JD, Rissing SW (1996) Rediscovery of the workerless inquiline ant Pogonomyrmex colei and additional notes on natural history (Hymenoptera: Formicidae). Insect Soc 43:69–76CrossRefGoogle Scholar
  64. Johnson CA, Vander Meer RK, Lavine B (2001) Changes in the cuticular hydrocarbon profile of the slave-maker ant queen, Polyergus breviceps emery, after killing a Formica host queen (Hymenoptera: Formicidae). J Chem Ecol 27:1787–1804PubMedCrossRefGoogle Scholar
  65. Johnson CA, Topoff H, Vander Meer RK, Lavine B (2005) Do these eggs smell funny to you?: an experimental study of egg discrimination by hosts of the social parasite Polyergus breviceps (Hymenoptera: Formicidae). Behav Ecol Sociobiol 57:245–255CrossRefGoogle Scholar
  66. Keller L, Nonacs P (1993) The role of queen pheromones in social insects: queen control or queen signal? Anim Behav 45:787–794CrossRefGoogle Scholar
  67. Kocher SD, Grozinger CM (2011) Cooperation, conflict, and the evolution of queen pheromones. J Chem Ecol 37:1263–1275PubMedCrossRefGoogle Scholar
  68. Kreuter K, Twele R, Francke W, Ayasse M (2010) Specialist Bombus vestalis and generalist Bombus bohemicus use different odour cues to find their host Bombus terrestris. Anim Behav 80:297–302CrossRefGoogle Scholar
  69. Kreuter K, Bunk E, Lückemeyer A et al (2012) How the social parasitic bumblebee Bombus bohemicus sneaks into power of reproduction. Behav Ecol Sociobiol 66:475–486CrossRefGoogle Scholar
  70. Küpper G, Schwammberger KH (1995) Social parasitism in bumble bees (Hymenoptera, Apidae): observations of Psithyrus sylvestris in Bombus pratorum nests. Apidologie 26:245–254CrossRefGoogle Scholar
  71. Lambardi D, Dani FR, Turillazzi S, Boomsma JJ (2007) Chemical mimicry in an incipient leaf-cutting ant social parasite. Behav Ecol Sociobiol 61:843–851CrossRefGoogle Scholar
  72. Le Conte Y, Hefetz A (2008) Primer pheromones in social Hymenoptera. Annu Rev Entomol 53:523–542PubMedCrossRefGoogle Scholar
  73. Lecocq T, Lhomme P, Michez D et al (2011) Molecular and chemical characters to evaluate species status of two cuckoo bumblebees: Bombus barbutellus and Bombus maxillosus (Hymenoptera, Apidae, Bombini). Syst Entomol 36:453–469CrossRefGoogle Scholar
  74. Lhomme P, Ayasse M, Valterová I et al (2012) Born in an alien nest: how do social parasite male offspring escape from host aggression? PLoS One 7:e43053PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lhomme P, Sramkova A, Kreuter K et al (2013) A method for year-round rearing of cuckoo bumblebees (Hymenoptera: Apoidea: Bombus subgenus Psithyrus). Ann Soc Entomol Fr 49:117–125CrossRefGoogle Scholar
  76. Lhomme P, Ayasse M, Valterová I et al (2015) A scent shield to survive: identification of the repellent compounds secreted by the male offspring of the cuckoo bumblebee Bombus vestalis. Entomol Exp Appl 157:263–270CrossRefGoogle Scholar
  77. Liebig J, Monnin T, Turillazzi S (2005) Direct assessment of queen quality and lack of worker suppression in a paper wasp. Proc R Soc B Biol Sci 272:1339–1344CrossRefGoogle Scholar
  78. Lopez-Osorio F, Perrard A, Pickett KM et al (2015) Phylogenetic tests reject Emery’s rule in the evolution of social parasitism in yellowjackets and hornets (Hymenoptera: Vespidae, Vespinae). R Soc Open Sci 2:150159PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lorenzi M, Bagnères A (2002) Concealing identity and mimicking hosts: a dual chemical strategy for a single social parasite? (Polistes atrimandibularis, Hymenoptera: Vespidae). Parasitology 125:507–512PubMedCrossRefGoogle Scholar
  80. Martin SJ, Jenner EA, Drijfhout FP (2007) Chemical deterrent enables a socially parasitic ant to invade multiple hosts. Proc R Soc Lond B Biol Sci 274:2717–2721CrossRefGoogle Scholar
  81. Martin SJ, Carruthers JM, Williams PH, Drijfhout FP (2010) Host specific social parasites (Psithyrus) indicate chemical recognition system in bumblebees. J Chem Ecol 36:855–863PubMedCrossRefGoogle Scholar
  82. Martin SJ, Helanterä H, Drijfhout FP (2011) Is parasite pressure a driver of chemical cue diversity in ants? Proc R Soc B Biol Sci 278:496–503CrossRefGoogle Scholar
  83. Monnin T (2006) Chemical recognition of reproductive status in social insects. Ann Zool Fennici 43:515–530Google Scholar
  84. Monnin T, Cini A, Lecat V, Fédérici P, Doums C (2009) No actual conflict over colony inheritance despite high potential conflict in the social wasp Polistes dominulus. Proc R Soc Lond B Biol Sci 276:1593–1601CrossRefGoogle Scholar
  85. Moore D, Liebig J (2010a) Mixed messages: fertility signaling interferes with nestmate recognition in the monogynous ant Camponotus floridanus. Behav Ecol Sociobiol 64:1011–1018CrossRefGoogle Scholar
  86. Moore D, Liebig J (2010b) Mechanisms of social regulation change across colony development in an ant. BMC Evol Biol 10:328PubMedPubMedCentralCrossRefGoogle Scholar
  87. Mori A, Visicchio R, Sledge MF et al (2000) Behavioral assays testing the appeasement allomone of Polyergus rufescens queens during host-colony usurpation. Ethol Ecol Evol 12:315–322CrossRefGoogle Scholar
  88. Mori A, Grasso DA, Visicchio R, Le Moli F (2001) Comparison of reproductive strategies and raiding behaviour in facultative and obligatory slave-making ants: the case of Formica sanguinea and Polyergus rufescens. Insect Soc 48:302–314CrossRefGoogle Scholar
  89. Nascimento FS, Tannure-Nascimento IC, Zucchi R (2004) Behavioral mediators of cyclical oligogyny in the Amazonian swarm-founding wasp Asteloeca ujhelyii (Vespidae, Polistinae, Epiponini). Insect Soc 51:17–23CrossRefGoogle Scholar
  90. Nash DR, Boomsma JJ (2008) Communication between hosts and social parasites. In: Sociobiology of communication. Oxford University Press, Oxford, pp 55–80CrossRefGoogle Scholar
  91. Niehuis O, Buellesbach J, Gibson JD et al (2013) Behavioural and genetic analyses of Nasonia shed light on the evolution of sex pheromones. Nature 494:345–348PubMedCrossRefGoogle Scholar
  92. Oi CA, Van Oystaeyen A, Caliari Oliveira R et al (2015) Dual effect of wasp queen pheromone in regulating insect sociality. Curr Biol 25:1638–1640PubMedCrossRefGoogle Scholar
  93. Oi CA, Millar JG, van Zweden JS, Wenseleers T (2016) Conservation of queen pheromones across two species of vespine wasps. J Chem Ecol 42:1175–1180PubMedCrossRefGoogle Scholar
  94. Oliveira CR, Oi CA, do Nascimento MMC et al (2015) The origin and evolution of queen and fertility signals in Corbiculate bees. BMC Evol Biol 15:254CrossRefGoogle Scholar
  95. Ondricek-Fallscheer RL (1992) A morphological comparison of the sting apparatuses of socially parasitic and nonparasitic species of yellowjackets (Hymenoptera: Vespidae). Sociobiology 20:245–293Google Scholar
  96. Ortolani I, Cervo R (2010) Intra-specific body size variation in Polistes paper wasps as a response to social parasite pressure. Ecol Entomol 35:352–359CrossRefGoogle Scholar
  97. Padilla M, Amsalem E, Altman N et al (2016) Chemical communication is not sufficient to explain reproductive inhibition in the bumblebee Bombus impatiens. R Soc Open Sci 3:160576PubMedPubMedCentralCrossRefGoogle Scholar
  98. Pamminger T, Scharf I, Pennings P, Foitzik S (2011) Increased host aggression as an induced defense against slave-making ants. Behav Ecol 22:255–260PubMedPubMedCentralCrossRefGoogle Scholar
  99. Pardi L (1948) Dominance order in Polistes wasps. Physiol Zool 21:1–13PubMedCrossRefGoogle Scholar
  100. Peeters C, Liebig J (2009) Fertility signaling as a general mechanism of regulating reproductive division of labor in ants. In: Gadau J, Fewell J (eds) In Organization of Insect Societies: from genome to Sociocomplexity. Harvard University Press, Harvard, pp 220–242Google Scholar
  101. Peso M, Elgar MA, Barron AB (2015) Pheromonal control: reconciling physiological mechanism with signalling theory. Biol Rev 90:542–559PubMedCrossRefGoogle Scholar
  102. Plath OE (1934) Bumblebees and their ways. The Macmillan, New YorkGoogle Scholar
  103. Ratnieks F, Foster K, Wenseleers T (2005) Conflict resolution in insect societies. Annu Rev Entomol 51:581CrossRefGoogle Scholar
  104. Reed HC, Akre RD (1983) Comparative Colony behavior of the Forest Yellowjacket, Vespula acadica (Sladen) (Hymenoptera: Vespidae). J Kansas Entomol Soc 56:581–606Google Scholar
  105. Richards KW (1994) Ovarian development, ovariole number, and relationship to body size in Psithyrus spp. (Hymenoptera: Apidae) in southern Alberta. J Kansas Entomol Soc 67:156–168Google Scholar
  106. Ruano F, Hefetz A, Lenoir A et al (2005) Dufour’s gland secretion as a repellent used during usurpation by the slave-maker ant Rossomyrmex minuchae. J Insect Physiol 51:1158–1164PubMedCrossRefGoogle Scholar
  107. Savolainen R, Vepsalainen K (2003) Sympatric speciation through intraspecific social parasitism. Proc Natl Acad Sci U S A 100:7169–7174PubMedPubMedCentralCrossRefGoogle Scholar
  108. Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, PrincetonGoogle Scholar
  109. Sladen FWL (1912) The humble-bee, its life-history and how to domesticate it, with descriptions of all the British species of Bombus and Psithyrus. MacMillian, LondonCrossRefGoogle Scholar
  110. Smith AA, Liebig J (2017) The evolution of cuticular fertility signals in eusocial insects. Curr Opin Insect Sci 22:79–84PubMedCrossRefGoogle Scholar
  111. Smith AA, Hölldober B, Liebig J (2009) Cuticular hydrocarbons reliably identify cheaters and allow enforcement of altruism in a social insect. Curr Biol 19:78–81PubMedCrossRefGoogle Scholar
  112. Smith AA, Hölldobler B, Liebig J (2012) Queen-specific signals and worker punishment in the ant Aphaenogaster cockerelli: the role of the Dufour’s gland. Anim Behav 83:587–593CrossRefGoogle Scholar
  113. Smith AA, Millar JG, Suarez AV (2015a) A social insect fertility signal is dependent on chemical context. Biol Lett 11:20140947PubMedPubMedCentralCrossRefGoogle Scholar
  114. Smith CR, Helms Cahan S, Kemena C et al (2015b) How do genomes create novel phenotypes? Insights from the loss of the worker caste in ant social parasites. Mol Biol Evol 32:2919–2931PubMedPubMedCentralCrossRefGoogle Scholar
  115. Smith AA, Millar JG, Suarez AV (2016) Comparative analysis of fertility signals and sex-specific cuticular chemical profiles of Odontomachus trap-jaw ants. J Exp Biol 219:419–430PubMedCrossRefGoogle Scholar
  116. Sramkova A, Ayasse M (2009) Chemical ecology involved in invasion success of the cuckoo bumblebee Psithyrus vestalis and in survival of workers of its host Bombus terrestris. Chemoecology 19:55–62CrossRefGoogle Scholar
  117. Taylor LH (1939) Observations of social parasitism in the genus Vespula Thomson. Ann Entomol Soc Am 32:304–315CrossRefGoogle Scholar
  118. Tsuneoka Y, Akino T (2012) Chemical camouflage of the slave-making ant Polyergus samurai queen in the process of the host colony usurpation (Hymenoptera: Formicidae). Chemoecology 22:89–99CrossRefGoogle Scholar
  119. Turillazzi S, Cervo R (1996) Oofagy and infanticide in colonies of social wasps. In: Infanticide and parental care. Harwood Academic Publishers, Amsterdam, pp 213–236Google Scholar
  120. Turillazzi S, Cervo R, Cavallari I (1990) Invasion of the nest of Polistes dominulus by the social parasites Sulcopolites sulcifer (Hymenoptera, Vespidae). Ethology 84:47–59CrossRefGoogle Scholar
  121. Turillazzi S, Sledge MF, Dani FR et al (2000) Social hackers: integration in the host chemical recognition system by a paper wasp social parasite. Naturwissenschaften 87:172–176PubMedCrossRefGoogle Scholar
  122. van Doorn A, Heringa J (1986) The ontogeny of a dominance hierarchy in colonies of the bumblebee Bombus terrestris (Hymenoptera, Apidae). Insect Soc 33:3–25CrossRefGoogle Scholar
  123. van Honk CGJ, Röseler PF, Velthuis H, Malotaux M (1981) The conquest of a Bombus terrestris colony by a Psithyrus vestalis female. Apidologie 12:57–68CrossRefGoogle Scholar
  124. van Oystaeyen A, Oliveira RC, Holman L et al (2014) Conserved class of queen pheromones stops social insect workers from reproducing. Science 343:287–290PubMedCrossRefGoogle Scholar
  125. Vander Meer RK, Alonso LE (1998) Pheromone directed behavior in ants. In: Pheromone communication in social insects: ants, wasps, bees and termites. Westview press, Boulder, pp 159–192Google Scholar
  126. Vergara CH, Schröder S, Almanza MT, Wittmann D (2003) Suppression of ovarian development of Bombus terrestris workers by B. terrestris queens, Psithyrus vestalis and Psithyrus bohemicus females. Apidologie 34:563–568CrossRefGoogle Scholar
  127. Wenseleers T, Ratnieks FLW (2006) Enforced altruism in insect societies. Nature 444:50–50PubMedCrossRefGoogle Scholar
  128. Williams PH, Thorp RW, Richardson L, Colla S (2014) Bumble bees of North America: an identification guide. Princeton University Press, PrincetonGoogle Scholar
  129. Wilson EO (1971) The insect societies. Harvard University Press, CambridgeGoogle Scholar
  130. Wilson EO (1987) Causes of ecological success: the case of the ants. J Anim Ecol 56:1–9CrossRefGoogle Scholar
  131. Zacchi F, Cervo R, Turillazzi S (1996) Polistes semenowi, obligate social parasite, invades the nest of its host, Polistes dominulus (Hymenoptera, Vespidae). Ins Soc Life 1:125–130Google Scholar
  132. Zimma BO, Ayasse M, Tengö J et al (2003) Do social parasitic bumblebees use chemical weapons? (Hymenoptera, Apidae). J Comp Physiol A 189:769–775CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biology, 208 Mueller LaboratoryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations