Journal of Chemical Ecology

, Volume 44, Issue 9, pp 750–769 | Cite as

Chemical Cues that Guide Female Reproduction in Drosophila melanogaster

  • Jean-Christophe BilleterEmail author
  • Mariana F. WolfnerEmail author
Review Article


Chemicals released into the environment by food, predators and conspecifics play critical roles in Drosophila reproduction. Females and males live in an environment full of smells, whose molecules communicate to them the availability of food, potential mates, competitors or predators. Volatile chemicals derived from fruit, yeast growing on the fruit, and flies already present on the fruit attract Drosophila, concentrating flies at food sites, where they will also mate. Species-specific cuticular hydrocarbons displayed on female Drosophila as they mature are sensed by males and act as pheromones to stimulate mating by conspecific males and inhibit heterospecific mating. The pheromonal profile of a female is also responsive to her nutritional environment, providing an honest signal of her fertility potential. After mating, cuticular and semen hydrocarbons transferred by the male change the female’s chemical profile. These molecules make the female less attractive to other males, thus protecting her mate’s sperm investment. Females have evolved the capacity to counteract this inhibition by ejecting the semen hydrocarbon (along with the rest of the remaining ejaculate) a few hours after mating. Although this ejection can temporarily restore the female’s attractiveness, shortly thereafter another male pheromone, a seminal peptide, decreases the female’s propensity to re-mate, thus continuing to protect the male’s investment. Females use olfaction and taste sensing to select optimal egg-laying sites, integrating cues for the availability of food for her offspring, and the presence of other flies and of harmful species. We argue that taking into account evolutionary considerations such as sexual conflict, and the ecological conditions in which flies live, is helpful in understanding the role of highly species-specific pheromones and blends thereof, as well as an individual’s response to the chemical cues in its environment.


Reproduction Pheromones Chemical cues Drosophila Seminal fluid proteins Olfaction Gustation 



We thank the editors Etya Amsalem and Abraham Hefetz for the opportunity to write this review, Frank Avila, Andrea Vogel, and two anonymous reviewers for helpful comments on the manuscript, and NIH grants R01-HD038921 and R01-HD059060 to MFW, and MFW and AG Clark (respectively) for support.


  1. Adams EM, Wolfner MF (2007) Seminal proteins but not sperm induce morphological changes in the Drosophila melanogaster female reproductive tract during sperm storage. J Insect Physiol 53:319–331. PubMedCrossRefGoogle Scholar
  2. Aguadé M, Miyashita N, Langley CH (1992) Polymorphism and divergence in the Mst26A male accessory gland gene region in Drosophila. Genetics 132:755–770PubMedPubMedCentralGoogle Scholar
  3. Antony C, Jallon J-M (1982) The chemical basis for sex recognition in Drosophila melanogaster. J Insect Physiol 28:873–880CrossRefGoogle Scholar
  4. Apger-McGlaughon J, Wolfner MF (2013) Post-mating change in excretion by mated Drosophila melanogaster females is a long-term response that depends on sex peptide and sperm. J Insect Physiol 59:1024–1030. PubMedPubMedCentralCrossRefGoogle Scholar
  5. Arbuthnott D, Fedina TY, Pletcher SD, Promislow DEL (2017) Mate choice in fruit flies is rational and adaptive. Nat Comms 8:13953. CrossRefGoogle Scholar
  6. Arienti M, Antony C, Wicker-Thomas C et al (2010) Ontogeny of Drosophila melanogaster female sex-appeal and cuticular hydrocarbons. Integr Zool 5:272–282. PubMedCrossRefGoogle Scholar
  7. Arnqvist G, Nilsson T (2000) The evolution of polyandry: multiple mating and female fitness in insects. Anim Behav 60:145–164. PubMedCrossRefGoogle Scholar
  8. Arnqvist G, Rowe L (2005) Sexual conflict. Princeton University PressGoogle Scholar
  9. Avila FW, Wolfner MF (2009) Acp36DE is required for uterine conformational changes in mated Drosophila females. Proc Natl Acad Sci USA 106:15796–15800. PubMedCrossRefGoogle Scholar
  10. Avila FW, Ravi Ram K, Bloch Qazi MC, Wolfner MF (2010) Sex peptide is required for the efficient release of stored sperm in mated Drosophila females. Genetics 186:595–600. PubMedPubMedCentralCrossRefGoogle Scholar
  11. Avila FW, Sirot LK, Laflamme BA et al (2011) Insect seminal fluid proteins: Identification and function. Annu Rev Entomol 56:21–40. PubMedPubMedCentralCrossRefGoogle Scholar
  12. Avila FW, Cohen AB, Ameerudeen FS et al (2015a) Retention of ejaculate by Drosophila melanogaster females requires the male-derived mating plug protein PEBme. Genetics 200:1171–1179. PubMedPubMedCentralCrossRefGoogle Scholar
  13. Avila FW, Mattei AL, Wolfner MF (2015b) Sex peptide receptor is required for the release of stored sperm by mated Drosophila melanogaster females. J Insect Physiol 76:1–6. PubMedPubMedCentralCrossRefGoogle Scholar
  14. Barnes AI, Boone JM, Partridge L, Chapman T (2007) A functioning ovary is not required for sex peptide to reduce receptivity to mating in D. melanogaster. J Insect Physiol 53:343–348. PubMedCrossRefGoogle Scholar
  15. Barnes AI, Wigby S, Boone JM et al (2008) Feeding, fecundity and lifespan in female Drosophila melanogaster. Proc Biol Sci 275:1675–1683. PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bartelt RJ, Schaner AM, Jackson LL (1985) Cis-Vaccenyl Acetate as an aggregation pheromone in Drosophila melanogaster. J Chem Ecol 11:1747–1756. PubMedCrossRefGoogle Scholar
  17. Bath E, Bowden S, Peters C et al (2017) Sperm and sex peptide stimulate aggression in female Drosophila. Nat Ecol Evol 1:0154. PubMedPubMedCentralCrossRefGoogle Scholar
  18. Baumberger JP (1917) The Food of Drosophila Melanogaster Meigen. Proc Natl Acad Sci USA 3:122–126PubMedCrossRefGoogle Scholar
  19. Becher PG, Bengtsson M, Hansson BS, Witzgall P (2010) Flying the fly: Long-range Flight behavior of Drosophila melanogaster to attractive odors. J Chem Ecol 36:599–607. PubMedCrossRefGoogle Scholar
  20. Becher PG, Flick G, Rozpędowska E et al (2012) Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol 26:822–828. CrossRefGoogle Scholar
  21. Begun DJ, Whitley P, Todd BL et al (2000) Molecular population genetics of male accessory gland proteins in Drosophila. Genetics 156:1879–1888PubMedPubMedCentralGoogle Scholar
  22. Bilen J, Atallah J, Azanchi R et al (2013) Regulation of onset of female mating and sex pheromone production by juvenile hormone in Drosophila melanogaster. Proc Natl Acad Sci USA 110:18321–18326. PubMedCrossRefGoogle Scholar
  23. Billeter J-C, Levine JD (2013) Who is he and what is he to you? Recognition in Drosophila melanogaster. Curr Opin Neurobiol 23:17–23.
  24. Billeter JC, Levine J (2015) The role of cVA and the Odorant binding protein Lush in social and sexual behavior in Drosophila melanogaster. Front Ecol Evol.
  25. Billeter J-C, Atallah J, Krupp JJ et al (2009) Specialized cells tag sexual and species identity in Drosophila melanogaster. Nature 461:987–991. PubMedCrossRefGoogle Scholar
  26. Billeter J-C, Jagadeesh S, Stepek N et al (2012) Drosophila melanogaster females change mating behaviour and offspring production based on social context. P Roy Soc Lond B Bio 279:2417–2425. CrossRefGoogle Scholar
  27. Bloch G, Herzog ED, Levine JD, Schwartz WJ (2013) Socially synchronized circadian oscillators. Proc Biol Sci 280:20130035–20130035. PubMedPubMedCentralCrossRefGoogle Scholar
  28. Bodenstein D (1947) Investigations on the reproductive system of Drosophila. J Exp Zool Part A: Ecological Genetics and Physiology 104:101–151. CrossRefGoogle Scholar
  29. Bontonou G, Shaik HA, Denis B, Wicker-Thomas C (2015) Acp70A regulates Drosophila pheromones through juvenile hormone induction. Insect Biochem Mol Biol 56:36–49. PubMedCrossRefGoogle Scholar
  30. Borovsky D, Carlson DA, Hancock RG et al (1994) De novo biosynthesis of juvenile hormone III and I by the accessory glands of the male mosquito. Insect Biochem Mol Biol 24:437–444. PubMedCrossRefGoogle Scholar
  31. Bownes M, Scott A, Shirras A (1988) Dietary components modulate yolk protein gene transcription in Drosophila melanogaster. Development 103:119–128Google Scholar
  32. Bretman A, Lawniczak MKN, Boone J, Chapman T (2010) A mating plug protein reduces early female remating in Drosophila melanogaster. J Insect Physiol 56:107–113. PubMedCrossRefGoogle Scholar
  33. Brieger G, Butterworth FM (1970) Drosophila melanogaster: Identity of Male Lipid in Reproductive System. Science 167:1262–1262. PubMedCrossRefGoogle Scholar
  34. Butterworth FM (1969) Lipids of Drosophila: a newly detected lipid in the male. Science 163:1356–1357. PubMedCrossRefGoogle Scholar
  35. Carvalho GB, Kapahi P, Anderson DJ, Benzer S (2006) Allocrine modulation of feeding behavior by the sex peptide of Drosophila. Curr Biol 16:692–696PubMedPubMedCentralCrossRefGoogle Scholar
  36. Carvalho M, Schwudke D, Sampaio JL et al (2010) Survival strategies of a sterol auxotroph. Development 137:3675–3685. PubMedPubMedCentralCrossRefGoogle Scholar
  37. Carvalho-Santos Z, Ribeiro C (2017) Gonadal ecdysone titers are modulated by protein availability but do not impact protein appetite. J Insect Physiol.
  38. Chapman T (2006) Evolutionary conflicts of interest between males and females. Curr Biol 16:R744–R754. PubMedCrossRefGoogle Scholar
  39. Chapman T, Liddle LF, Kalb JM et al (1995) Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature 373:241–244. PubMedCrossRefGoogle Scholar
  40. Chapman T, Neubaum DM, Wolfner MF, Partridge L (2000) The role of male accessory gland protein Acp36DE in sperm competition in Drosophila melanogaster. Proc Biol Sci 267:1097–1105. PubMedPubMedCentralCrossRefGoogle Scholar
  41. Chapman T, Bangham J, Vinti G et al (2003) The sex peptide of Drosophila melanogaster: female post-mating responses analyzed by using RNA interference. Proc Natl Acad Sci USA 100:9923–9928. PubMedCrossRefGoogle Scholar
  42. Chen Y, Amrein H (2017) Ionotropic receptors mediate Drosophila oviposition preference through sour gustatory receptor neurons. Curr Biol 27:2741–2750. PubMedCrossRefPubMedCentralGoogle Scholar
  43. Chen PS, Stumm-Zollinger E, Aigaki T et al (1988) A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell 54:291–298PubMedCrossRefGoogle Scholar
  44. Chertemps T, Duportets L, Labeur C et al (2006) A female-specific desaturase gene responsible for diene hydrocarbon biosynthesis and courtship behaviour in Drosophila melanogaster. Insect Mol Biol 15:465–473. PubMedCrossRefGoogle Scholar
  45. Chertemps T, Duportets L, Labeur C et al (2007) A female-biased expressed elongase involved in long-chain hydrocarbon biosynthesis and courtship behavior in Drosophila melanogaster. Proc Natl Acad Sci USA 104:4273–4278. PubMedCrossRefGoogle Scholar
  46. Chiang YN, Tan KJ, Chung H et al (2016) Steroid hormone signaling is essential for pheromone production and oenocyte survival. PLoS Genet 12:e1006126. PubMedPubMedCentralCrossRefGoogle Scholar
  47. Cirera S, Aguadé M (1997) Evolutionary history of the sex-peptide (Acp70A) gene region in Drosophila melanogaster. Genetics 147:189–197PubMedPubMedCentralGoogle Scholar
  48. Clark AG, Aguadé M, Prout T et al (1995) Variation in sperm displacement and its association with accessory gland protein loci in Drosophila melanogaster. Genetics 139:189–201PubMedPubMedCentralGoogle Scholar
  49. Cognigni P, Bailey AP, Miguel-Aliaga I (2011) Enteric neurons and systemic signals couple nutritional and reproductive status with intestinal homeostasis. Cell Metabolism 13:92–104PubMedPubMedCentralCrossRefGoogle Scholar
  50. Coyne J, Crittenden A, Mah K (1994) Genetics of a pheromonal difference contributing to reproductive isolation in Drosophila. Science 265:1461–1464. PubMedCrossRefGoogle Scholar
  51. Dallerac R, Labeur C, Jallon JM et al (2000) A delta 9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster. Proc Natl Acad Sci USA 97:9449–9454. PubMedCrossRefGoogle Scholar
  52. Detzel A, Wink M (1993) Attraction, deterrence or intoxication of bees (Apis mellifera) by plant allelochemicals. Chemoecology 4:8–18.
  53. Dove AE, Cook BL, Irgebay Z, Vecsey CG (2017) Mechanisms of sleep plasticity due to sexual experience in Drosophila melanogaster. Physiol Behav 180:146–158. PubMedCrossRefGoogle Scholar
  54. Dumenil C, Woud D, Pinto F et al (2016) Pheromonal cues deposited by mated females convey social information about egg-laying sites in Drosophila melanogaster. J Chem Ecol 42:259–269. PubMedPubMedCentralCrossRefGoogle Scholar
  55. Dweck HKM, Ebrahim SAM, Kromann S et al (2013) Olfactory preference for egg laying on citrus substrates in Drosophila. Curr Biol 23:2472–2480. PubMedCrossRefGoogle Scholar
  56. Dweck HKM, Ebrahim SAM, Farhan A et al (2015a) Olfactory proxy detection of dietary antioxidants in Drosophila. Curr Biol 25:455–466. PubMedCrossRefGoogle Scholar
  57. Dweck HKM, Ebrahim SAM, Thoma M et al (2015b) Pheromones mediating copulation and attraction in Drosophila. Proc Natl Acad Sci USA 112:E2829–E2835. PubMedCrossRefGoogle Scholar
  58. Ebrahim SAM, Dweck HKM, Stökl J et al (2015) Drosophila avoids parasitoids by sensing their semiochemicals via a dedicated olfactory circuit. PLoS Biol 13:e1002318. PubMedPubMedCentralCrossRefGoogle Scholar
  59. Ejima A, Smith BPC, Lucas C et al (2007) Generalization of courtship learning in Drosophila is mediated by cis-vaccenyl acetate. Curr Biol 17:599–605. PubMedPubMedCentralCrossRefGoogle Scholar
  60. Everaerts C, Farine J-P, Cobb M, Ferveur J-F (2010) Drosophila cuticular hydrocarbons revisited: mating status alters cuticular profiles. PLoS ONE 5:e9607. PubMedPubMedCentralCrossRefGoogle Scholar
  61. Fan P, Manoli DS, Ahmed OM et al (2013) Genetic and neural mechanisms that inhibit Drosophila from mating with other species. Cell 154:89–102. PubMedCrossRefGoogle Scholar
  62. Farine J-P, Ferveur J-F, Everaerts C (2012) Volatile Drosophila cuticular pheromones are affected by social but not sexual experience. PLoS ONE 7:e40396. PubMedPubMedCentralCrossRefGoogle Scholar
  63. Fedina TY, Arbuthnott D, Rundle HD et al (2017) Tissue-specific insulin signaling mediates female sexual attractiveness. PLoS Genet 13:e1006935. PubMedPubMedCentralCrossRefGoogle Scholar
  64. Feinsod FM, Spielman A (1980) Nutrient-mediated juvenile hormone secretion in mosquitoes. J Insect Physiol 26:113–117. CrossRefGoogle Scholar
  65. Feng K, Palfreyman MT, Häsemeyer M et al (2014) Ascending SAG neurons control sexual receptivity of drosophila females. Neuron:1–14.
  66. Ferveur JF, Sureau G (1996) Simultaneous influence on male courtship of stimulatory and inhibitory pheromones produced by live sex-mosaic Drosophila melanogaster. Proc Biol Sci 263:967–973. PubMedCrossRefGoogle Scholar
  67. Ferveur JF, Cobb M, Boukella H, Jallon JM (1996) World-wide variation in Drosophila melanogaster sex pheromone: behavioural effects, genetic bases and potential evolutionary consequences. Genetica 97:73–80PubMedCrossRefGoogle Scholar
  68. Findlay GD, Sitnik JL, Wang W et al (2014) Evolutionary Rate covariation identifies new members of a protein network required for Drosophila melanogaster female post-mating responses. PLoS Genet 10:e1004108. PubMedPubMedCentralCrossRefGoogle Scholar
  69. Fiumera AC, Dumont BL, Clark AG (2005) Sperm competitive ability in Drosophila melanogaster associated with variation in male reproductive proteins. Genetics 169:243–257. PubMedPubMedCentralCrossRefGoogle Scholar
  70. Flaven-Pouchon J, Farine J-P, Ewer J, Ferveur J-F (2016) Regulation of cuticular hydrocarbon profile maturation by Drosophila tanning hormone, bursicon, and its interaction with desaturase activity. Insect Biochem Mol Biol 79:87–96. PubMedCrossRefGoogle Scholar
  71. Fleury F, Ris N, Allemand R et al (2004) Ecological and Genetic interactions in drosophila–parasitoids communities: a case study with D. Melanogaster, D. Simulans and their common Leptopilina Parasitoids in Southeastern France. Genetica 120:181–194. PubMedCrossRefGoogle Scholar
  72. Fowler K, Partridge L (1989) A cost of mating in female fruitflies. Nature 338:760–761. CrossRefGoogle Scholar
  73. Fricke C, Bretman A, Chapman T (2010) Female nutritional status determines the magnitude and sign of responses to a male ejaculate signal in Drosophila melanogaster. J Evol Biol 23:157–165. PubMedCrossRefGoogle Scholar
  74. Gabrieli P, Kakani EG, Mitchell SN et al (2014) Sexual transfer of the steroid hormone 20E induces the postmating switch in Anopheles gambiae. Proc Natl Acad Sci USA 111:16353–16358. PubMedCrossRefGoogle Scholar
  75. Garbaczewska M, Billeter J-C, Levine JD (2012) Drosophila melanogaster males increase the number of sperm in their ejaculate when perceiving rival males. J Insect Physiol.
  76. Garbe DS, Vigderman AS, Moscato E et al (2016) Changes in female Drosophila sleep following mating are mediated by SPSN-SAG Neurons. J Biol Rhythms 31:551–567. PubMedCrossRefGoogle Scholar
  77. van der Goes van Naters W, Carlson JR (2007) Receptors and neurons for fly odors in Drosophila. Curr Biol 17:606–612. PubMedPubMedCentralCrossRefGoogle Scholar
  78. Gomez-Diaz C, Benton R (2013) The joy of sex pheromones. EMBO Rep 14:874–883. PubMedPubMedCentralCrossRefGoogle Scholar
  79. Gorter JA, Jagadeesh S, Gahr C et al (2016) The nutritional and hedonic value of food modulate sexual receptivity in Drosophila melanogaster females. Sci Rep 6:19441. PubMedPubMedCentralCrossRefGoogle Scholar
  80. Gou B, Liu Y, Guntur AR et al (2014) Mechanosensitive neurons on the internal reproductive tract contribute to egg-laying-induced acetic Acid attraction in Drosophila. Cell Rep 9:522–530. PubMedPubMedCentralCrossRefGoogle Scholar
  81. Grosjean Y, Rytz R, Farine J-P et al (2011) An olfactory receptor for food-derived odours promotes male courtship in Drosophila. Nature 478:236–240. PubMedCrossRefGoogle Scholar
  82. Guiraudie-Capraz G, DB PHO, Jallon J-M (2007) Role of the ejaculatory bulb in biosynthesis of the male pheromone cis-vaccenyl acetate in Drosophila melanogaster. Integr Zool 2:89–99. PubMedCrossRefGoogle Scholar
  83. Ha TS, Smith DP (2006) A pheromone receptor mediates 11-cis-vaccenyl acetate-induced responses in Drosophila. J Neurosci 26:8727–8733. PubMedCrossRefGoogle Scholar
  84. Haerty W, Jagadeeshan S, Kulathinal RJ et al (2007) Evolution in the fast lane: Rapidly evolving sex-related genes in Drosophila. Genetics 177:1321–1335. PubMedPubMedCentralCrossRefGoogle Scholar
  85. Hall JC (2003) Genetics and molecular biology of rhythms in Drosophila and other insects. Adv Gen 48:1–280CrossRefGoogle Scholar
  86. Harshman LG, Prout T (1994) Sperm displacement without sperm transfer in Drosophila melanogaster. Evolution 48:758. PubMedCrossRefGoogle Scholar
  87. Harshman LG, Hoffmann AA, Prout T (1988) Environmental effects on remating in Drosophila melanogaster. Evolution 42:312–321PubMedCrossRefGoogle Scholar
  88. Hasemeyer M, Yapici N, Heberlein U, Dickson BJ (2009) Sensory neurons in the Drosophila genital tract regulate female reproductive behavior. Neuron 61:511–518. PubMedCrossRefGoogle Scholar
  89. Haussmann IU, Hemani Y, Wijesekera T et al (2013) Multiple pathways mediate the sex-peptide-regulated switch in female Drosophila reproductive behaviours. P Roy Soc Lond B Bio 280:20131938. CrossRefGoogle Scholar
  90. Heifetz Y, Wolfner MF (2004) Mating, seminal fluid components, and sperm cause changes in vesicle release in the Drosophila female reproductive tract. Proc Natl Acad Sci USA 101:6261–6266. PubMedCrossRefGoogle Scholar
  91. Heifetz Y, Lung O, Frongillo EA, Wolfner MF (2000) The Drosophila seminal fluid protein Acp26Aa stimulates release of oocytes by the ovary. Curr Biol 10:99–102. PubMedCrossRefGoogle Scholar
  92. Heifetz Y, Lindner M, Garini Y, Wolfner MF (2014) Mating regulates neuromodulator ensembles at nerve termini innervating the Drosophila reproductive tract. Curr Biol 24:731–737. PubMedPubMedCentralCrossRefGoogle Scholar
  93. Honegger H-W, Dewey EM, Ewer J (2008) Bursicon, the tanning hormone of insects: recent advances following the discovery of its molecular identity. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194:989–1005. PubMedCrossRefGoogle Scholar
  94. Hopkins B, Avila FW, Wolfner MF (2017) Insect Accessory Glands. In: Jegou B, Skinner M (eds) Encyclopedia of Reproduction.Google Scholar
  95. Hudry B, Khadayate S, Miguel-Aliaga I (2016) The sexual identity of adult intestinal stem cells controls organ size and plasticity. Nature 530:344–348. PubMedPubMedCentralCrossRefGoogle Scholar
  96. Hussain A, Üçpunar HK, Zhang M et al (2016) Neuropeptides modulate female chemosensory processing upon mating in Drosophila. PLoS Biol 14:e1002455. PubMedPubMedCentralCrossRefGoogle Scholar
  97. Isaac RE, Li C, Leedale AE, Shirras AD (2010) Drosophila male sex peptide inhibits siesta sleep and promotes locomotor activity in the post-mated female. Proc Roy Soc B 277:65–70. CrossRefGoogle Scholar
  98. Jallon J-M, David JR (1987) Variation in cuticular hydrocarbons among the eight species of the Drosophila melanogaster subgroup. Evolution:294–302Google Scholar
  99. Jennions MD, Petrie M (2000) Why do females mate multiply? A review of the genetic benefits. Biol Rev Camb Philos Soc 75:21–64PubMedCrossRefGoogle Scholar
  100. Joseph RM, Heberlein U (2012) Tissue-Specific Activation of a Single Gustatory Receptor Produces Opposing Behavioral Responses in Drosophila. Genetics 192:521–532. PubMedPubMedCentralCrossRefGoogle Scholar
  101. Joseph RM, Devineni AV, King IFG, Heberlein U (2009) Oviposition preference for and positional avoidance of acetic acid provide a model for competing behavioral drives in Drosophila. Proc Natl Acad Sci USA 106:11352–11357. PubMedCrossRefGoogle Scholar
  102. Kamimura Y (2007) Twin intromittent organs of Drosophila for traumatic insemination. Biol Lett 3:401–404. PubMedPubMedCentralCrossRefGoogle Scholar
  103. Keesey IW, Koerte S, Retzke T et al (2016) Adult frass provides a pheromone signature for Drosophila feeding and aggregation. J Chem Ecol 42:739–747. PubMedPubMedCentralCrossRefGoogle Scholar
  104. Keesey IW, Koerte S, Khallaf MA et al (2017) Pathogenic bacteria enhance dispersal through alteration of Drosophila social communication. Nat Comms 8:265. CrossRefGoogle Scholar
  105. Kent C, Azanchi R, Smith B et al (2008) Social context influences chemical communication in D. melanogaster males. Curr Biol 18:1384–1389. PubMedCrossRefGoogle Scholar
  106. Kim YJ, Bartalska K, Audsley N et al (2010) MIPs are ancestral ligands for the sex peptide receptor. Proc Natl Acad Sci USA 107:6520–6525. PubMedCrossRefGoogle Scholar
  107. Klowden MJ, Chambers GM (1991) Male accessory gland substances activate egg development in nutritionally stressed Aedes aegypti mosquitoes. J Insect Physiol 37:721–726. CrossRefGoogle Scholar
  108. Krochmal A, Wilken L, Chien M (1972) Lobeline content of four Appalachian lobelias. Lloydia 35:303–304PubMedGoogle Scholar
  109. Krupp JJ, Kent C, Billeter J-C et al (2008) Social experience modifies pheromone expression and mating behavior in male Drosophila melanogaster. Curr Biol 18:1373–1383. PubMedCrossRefGoogle Scholar
  110. Krupp JJ, Billeter J-C, Wong A et al (2013) Pigment-Dispersing Factor Modulates pheromone production in clock cells that influence mating in Drosophila. Neuron 79:54–68. PubMedPubMedCentralCrossRefGoogle Scholar
  111. Kubli E (2008) Sexual behaviour: a receptor for sex control in Drosophila females. Curr. biol. 18:R201–R202. CrossRefGoogle Scholar
  112. Kuo T-H, Fedina TY, Hansen I et al (2012) Insulin signaling mediates sexual attractiveness in Drosophila. PLoS Genet 8:e1002684. PubMedPubMedCentralCrossRefGoogle Scholar
  113. Kurtovic A, Widmer A, Dickson BJ (2007) A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446:542–546. PubMedCrossRefGoogle Scholar
  114. Lacaille F, Hiroi M, Twele R et al (2007) An inhibitory sex pheromone tastes bitter for Drosophila males. PLoS ONE 2:e661. PubMedPubMedCentralCrossRefGoogle Scholar
  115. Lange AB (2009) Neural mechanisms coordinating the female reproductive system in the locust. Front Biosci (Landmark Ed) 14:4401–4415CrossRefGoogle Scholar
  116. Laturney M, Billeter J-C (2014) Neurogenetics of female reproductive behaviors in Drosophila melanogaster. Adv Gen 85:1–108. CrossRefGoogle Scholar
  117. Laturney M, Billeter J-C (2016) Drosophila melanogaster females restore their attractiveness after mating by removing male anti-aphrodisiac pheromones. Nat Comms 7:12322. CrossRefGoogle Scholar
  118. Lebreton S, Becher PG, Hansson BS, Witzgall P (2012) Attraction of Drosophila melanogaster males to food-related and fly odours. J Insect Physiol 58:125–129. PubMedCrossRefGoogle Scholar
  119. Lebreton S, Borrero-Echeverry F, Gonzalez F et al (2017) A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. BMC biology 15:88. PubMedPubMedCentralCrossRefGoogle Scholar
  120. Lee K-M, Daubnerová I, Isaac RE et al (2015) A Neuronal pathway that controls sperm ejection and storage in female Drosophila. Curr Biol 25:790–797. PubMedCrossRefGoogle Scholar
  121. Lefèvre T, de Roode JC, Kacsoh BZ, Schlenke TA (2012) Defence strategies against a parasitoid wasp in Drosophila: fight or flight? Biol Lett 8:230–233. PubMedCrossRefGoogle Scholar
  122. Leftwich PT, Clarke NVE, Hutchings MI, Chapman T (2017) Gut microbiomes and reproductive isolation in Drosophila. Proc Natl Acad Sci USA 114:12767–12772. PubMedCrossRefGoogle Scholar
  123. Lemaitre B, Miguel-Aliaga I (2013) The digestive tract of Drosophila melanogaster. Annu Rev Genet 47:377–404. PubMedCrossRefGoogle Scholar
  124. Levine JD (2002) Resetting the Circadian Clock by Social Experience in Drosophila melanogaster. Science 298:2010–2012. PubMedCrossRefGoogle Scholar
  125. Lin C-C, Prokop-Prigge KA, Preti G, Potter CJ (2015) Food odors trigger Drosophila males to deposit a pheromone that guides aggregation and female oviposition decisions. eLife 4:e08688. doi:
  126. Lin H-H, Cao D-S, Sethi S et al (2016) Hormonal modulation of pheromone detection enhances male courtship success. Neuron:1–16.
  127. Liu H, Kubli E (2003) Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc Natl Acad Sci USA 100:9929–9933. PubMedCrossRefGoogle Scholar
  128. Lu B, LaMora A, Sun Y, et al (2012) ppk23-dependent chemosensory Functions contribute to courtship behavior in Drosophila melanogaster. PLoS Genet 8:e1002587. doi:
  129. Lung O, Wolfner MF (1999) Drosophila seminal fluid proteins enter the circulatory system of the mated female fly by crossing the posterior vaginal wall. Insect Biochem Mol Biol 29:1043–1052. PubMedCrossRefGoogle Scholar
  130. Maheshwari S, Barbash DA (2011) The genetics of hybrid incompatibilities. Annu Rev Genet 45:331–355. PubMedCrossRefGoogle Scholar
  131. Makki R, Cinnamon E, Gould AP (2014) The development and Functions of oenocytes. Annu Rev Entomol 59:405–425. PubMedCrossRefGoogle Scholar
  132. Manier MK, Belote JM, Berben KS et al (2010) Resolving mechanisms of competitive fertilization success in Drosophila melanogaster. Science 328:354–357. PubMedCrossRefGoogle Scholar
  133. Manning A (1967) The control of sexual receptivity in female Drosophila. Anim Behav 15:239–250PubMedCrossRefGoogle Scholar
  134. Mansourian S, Stensmyr MC (2015) The chemical ecology of the fly. Curr Opin Neurobiol 34:95–102. PubMedCrossRefGoogle Scholar
  135. Mansourian S, Corcoran J, Enjin A et al (2016) Fecal-Derived Phenol Induces Egg-Laying Aversion in Drosophila. Curr Biol 26:2762–2769. PubMedCrossRefGoogle Scholar
  136. Marcillac F, Bousquet F, Alabouvette J et al (2005) A mutation with major effects on Drosophila melanogaster sex pheromones. Genetics 171:1617–1628. PubMedPubMedCentralCrossRefGoogle Scholar
  137. Markow T (2000) Forced matings in natural populations of drosophila. Am Nat 156:100–103. PubMedCrossRefGoogle Scholar
  138. Mattei AL, Riccio ML, Avila FW, Wolfner MF (2015) Integrated 3D view of postmating responses by the Drosophila melanogaster female reproductive tract, obtained by micro-computed tomography scanning. Proc Natl Acad Sci USA 112:8475–8480. PubMedCrossRefGoogle Scholar
  139. Mattei AL, Kamimura Y, Wolfner MF (2017) Intimate intimas: Positioning of copulatory organs in mating Drosophila. Mol Reprod Dev 84:1117–1117PubMedPubMedCentralCrossRefGoogle Scholar
  140. Miyamoto T, Amrein H (2008) Suppression of male courtship by a Drosophila pheromone receptor. Nat Neurosci 11:874–876. PubMedPubMedCentralCrossRefGoogle Scholar
  141. Monastirioti M (2003) Distinct octopamine cell population residing in the CNS abdominal ganglion controls ovulation in Drosophila melanogaster. Dev Biol 264:38–49PubMedCrossRefGoogle Scholar
  142. Monastirioti M, Charles E, Linn J, White K (1996) Characterization of Drosophila tyramine β-hydroxylase gene and isolation of mutant flies lacking octopamine. J Neurosci 16:3900–3911. PubMedCrossRefGoogle Scholar
  143. Monsma SA, Harada HA, Wolfner MF (1990) Synthesis of two Drosophila male accessory gland proteins and their fate after transfer to the female during mating. Dev Biol 142:465–475. PubMedCrossRefGoogle Scholar
  144. Moore AJ, Pizzari T (2005) Quantitative genetic models of sexual conflict based on interacting phenotypes. Am Nat 165(Suppl 5):S88–S97. PubMedCrossRefGoogle Scholar
  145. Moshitzky P, Fleischmann I, Chaimov N et al (1996) Sex-peptide activates juvenile hormone biosynthesis in the Drosophila melanogaster corpus allatum. Arch Insect Biochem Physiol 32:363–374.<363::AID-ARCH9>3.0.CO;2-T PubMedCrossRefGoogle Scholar
  146. Mueller JL, Ram KR, McGraw LA et al (2005) Cross-species comparison of Drosophila male accessory gland protein genes. Genetics 171:131–143. PubMedPubMedCentralCrossRefGoogle Scholar
  147. Ng WC, Chin JSR, Tan KJ, Yew JY (2015) The fatty acid elongase bond is essential for Drosophila sex pheromone synthesis and male fertility. Nat Comms 6:8263. CrossRefGoogle Scholar
  148. Ottiger M, Soller M, Stocker RF, Kubli E (2000) Binding sites of Drosophila melanogaster sex peptide pheromones. J Neurobiol 44:57–71PubMedCrossRefGoogle Scholar
  149. Palanca L, Gaskett AC, Günther CS et al (2013) Quantifying variation in the ability of yeasts to attract Drosophila melanogaster. PLoS ONE 8:e75332. PubMedPubMedCentralCrossRefGoogle Scholar
  150. Parker GA (2006) Sexual conflict over mating and fertilization: an overview. Philos Trans R Soc Lond, B, Biol Sci 361:235–259. PubMedPubMedCentralCrossRefGoogle Scholar
  151. Parker G, Pizzari T (2010) Sperm competition and ejaculate economics - Parker. Biol Rev 85:897–934. PubMedCrossRefGoogle Scholar
  152. Peabody NC, White BH (2013) Eclosion gates progression of the adult ecdysis sequence of Drosophila. J Exp Biol 216:4395–4402. PubMedPubMedCentralCrossRefGoogle Scholar
  153. Pechine J, Antony C, Jallon J (1988) Precise characterization of cuticular compounds in young Drosophila by mass-spectrometry. J Chem Ecol 14:1071–1085PubMedCrossRefGoogle Scholar
  154. Peng J, Chen S, Büsser S et al (2005) Gradual release of sperm bound sex-peptide controls female postmating behavior in Drosophila. Curr Biol 15:207–213. PubMedCrossRefGoogle Scholar
  155. Perry JC, Sirot L, Wigby S (2013) The seminal symphony: how to compose an ejaculate. Trends in Ecol Evolut 28:414–422. CrossRefGoogle Scholar
  156. Pilpel N, Nezer I, Applebaum S, Heifetz Y (2008) Mating-increases trypsin in female Drosophila hemolymph. Insect Biochem Mol Biol 38:320–330PubMedCrossRefGoogle Scholar
  157. Pischedda A, Shahandeh MP, Cochrane WG et al (2014) Natural variation in the strength and direction of male mating preferences for female pheromones in Drosophila melanogaster. PLoS ONE 9:e87509. PubMedPubMedCentralCrossRefGoogle Scholar
  158. Ram KR, Wolfner MF (2009) A network of interactions among seminal proteins underlies the long-term postmating response in Drosophila. Proc Natl Acad Sci USA 106:15384–15389. PubMedCrossRefGoogle Scholar
  159. Ravi Ram K, Ji S, Wolfner MF (2005) Fates and targets of male accessory gland proteins in mated female Drosophila melanogaster. Insect Biochem Mol Biol 35:1059–1071. PubMedCrossRefGoogle Scholar
  160. Reed MR (1938) The olfactory reactions of Drosophila melanogaster meigen to the products of fermenting banana. Physiol Zool 11:317–325. CrossRefGoogle Scholar
  161. Reiff T, Jacobson J, Cognigni P et al (2015) Endocrine remodelling of the adult intestine sustains reproduction in Drosophila. eLife.
  162. Reinhart M, Carney T, Clark AG, Fiumera AC (2014) Characterizing male-female interactions using natural genetic variation in Drosophila melanogaster. J Heredity 106:67–79. CrossRefGoogle Scholar
  163. Renou M (2014) Pheromones and general odor perception in insects. In: Mucignat-Caretta C, editor. Neurobiology of Chemical Communication. Boca Raton (FL): CRC Press/Taylor & Francis; 2014. Chapter 2. Available from:
  164. Rezával C, Pavlou HJ, Dornan AJ et al (2012) Neural circuitry underlying Drosophila female postmating behavioral responses. Curr Biol.
  165. Rezával C, Nojima T, Neville MC et al (2014) Sexually dimorphic octopaminergic neurons modulate female postmating behaviors in Drosophila. Curr Biol 24:725–730. PubMedCrossRefGoogle Scholar
  166. Ribeiro C, Dickson BJ (2010) Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila. Curr Biol 20:1000–1005. PubMedCrossRefGoogle Scholar
  167. Rogers DW, Baldini F, Battaglia F et al (2009) Transglutaminase-mediated semen coagulation controls sperm storage in the malaria mosquito. PLoS Biol 7:e1000272. PubMedPubMedCentralCrossRefGoogle Scholar
  168. Ronderos DS, Smith DP (2010) Activation of the T1 neuronal circuit is necessary and sufficient to induce sexually dimorphic mating behavior in Drosophila melanogaster. J Neurosci 30:2595–2599. PubMedPubMedCentralCrossRefGoogle Scholar
  169. Rönn J, Katvala M, Arnqvist G (2007) Coevolution between harmful male genitalia and female resistance in seed beetles. Proc Natl Acad Sci USA 104:10921–10925. PubMedCrossRefGoogle Scholar
  170. Rubinstein CD, Wolfner MF (2013) Drosophila seminal protein ovulin mediates ovulation through female octopamine neuronal signaling. Proc Natl Acad Sci USA. 110:17420–17425. PubMedCrossRefGoogle Scholar
  171. Savarit F, Sureau G, Cobb M, Ferveur JF (1999) Genetic elimination of known pheromones reveals the fundamental chemical bases of mating and isolation in Drosophila. Proc Natl Acad Sci USA 96:9015–9020PubMedCrossRefGoogle Scholar
  172. Scheidler NH, Liu C, Hamby KA et al (2015) Volatile codes: Correlation of olfactory signals and reception in Drosophila-yeast chemical communication. Sci Rep 5:14059. PubMedPubMedCentralCrossRefGoogle Scholar
  173. Schlief ML, Wilson RI (2007) Olfactory processing and behavior downstream from highly selective receptor neurons. Nat Neurosci 10:623–630. PubMedPubMedCentralCrossRefGoogle Scholar
  174. Schnakenberg SL, Siegal ML, Bloch Qazi MC (2012) Oh, the places they'll go: Female sperm storage and sperm precedence in Drosophila melanogaster. Spermatogenesis 2:224–235. PubMedPubMedCentralCrossRefGoogle Scholar
  175. Scott D (1986) Sexual mimicry regulates the attractiveness of mated Drosophila melanogaster females. Proc Natl Acad Sci USA 83:8429–8433PubMedCrossRefGoogle Scholar
  176. Seeley C, Dukas R (2011) Teneral matings in fruit flies: male coercion and female response. Anim Behav 81:595–601. CrossRefGoogle Scholar
  177. Shankar S, Chua JY, Tan KJ, et al (2015) The neuropeptide tachykinin is essential for pheromone detection in a gustatory neural circuit. eLife 4:e06914. doi:
  178. Shapiro AB, Wheelock GD, Hagedorn HH et al (1986) Juvenile hormone and juvenile hormone esterase in adult females of the mosquito Aedes aegypti. J Insect Physiol 32:867–877. CrossRefGoogle Scholar
  179. Sharon G, Segal D, Ringo JM et al (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci USA 107:20051–20056. PubMedCrossRefGoogle Scholar
  180. Shirangi TR, Dufour HD, Williams TM, Carroll SB (2009) Rapid evolution of sex pheromone-producing enzyme expression in Drosophila. PLoS Biol 7:e1000168. PubMedPubMedCentralCrossRefGoogle Scholar
  181. Silbering AF, Rytz R, Grosjean Y et al (2011) Complementary function and integrated wiring of the evolutionarily distinct Drosophila olfactory subsystems. J Neurosci 31:13357–13375. PubMedCrossRefGoogle Scholar
  182. Sirot LK, Wolfner MF, Wigby S (2011) Protein-specific manipulation of ejaculate composition in response to female mating status in Drosophila melanogaster. Proc Natl Acad Sci USA 108:9922–9926. PubMedCrossRefGoogle Scholar
  183. Sirot LK, Findlay GD, Sitnik JL, et al (2014) Molecular characterization and evolution of a gene family encoding both female- and male-specific reproductive proteins in Drosophila. Mol Biol Evol 31:1554–1567.
  184. Sirot LK, Wong A, Chapman T, Wolfner MF (2015) Sexual conflict and seminal fluid proteins: a dynamic landscape of sexual interactions. Cold Spring Harb Perspect Biol 7:a017533. PubMedCentralCrossRefGoogle Scholar
  185. Soller M, Bownes M, Kubli E (1999) Control of oocyte maturation in sexually mature Drosophila females. Dev Biol 208:337–351. PubMedCrossRefGoogle Scholar
  186. Stamps JA, Yang LH, Morales VM, Boundy-Mills KL (2012) Drosophila regulate yeast density and increase yeast community similarity in a natural substrate. PLoS ONE 7:e42238. PubMedPubMedCentralCrossRefGoogle Scholar
  187. Stensmyr MC, Dweck HKM, Farhan A et al (2012) A Conserved Dedicated Olfactory Circuit for Detecting Harmful Microbes in Drosophila. Cell 151:1345–1357. PubMedCrossRefGoogle Scholar
  188. Stökl J, Strutz A, Dafni A et al (2010) A deceptive pollination system targeting drosophilids through olfactory mimicry of yeast. Curr Biol 20:1846–1852. PubMedCrossRefGoogle Scholar
  189. Swanson WJ (2004) Evolutionary expressed sequence tag analysis of Drosophila female reproductive tracts identifies genes subjected to positive selection. Genetics 168:1457–1465. PubMedPubMedCentralCrossRefGoogle Scholar
  190. Symonds MRE, Wertheim B (2005) The mode of evolution of aggregation pheromones in Drosophila species. J Evol Biol 18:1253–1263. PubMedCrossRefGoogle Scholar
  191. Takahashi A, Tsaur SC, Coyne JA, Wu CI (2001) The nucleotide changes governing cuticular hydrocarbon variation and their evolution in Drosophila melanogaster. Proc Natl Acad Sci USA 98:3920–3925. PubMedCrossRefGoogle Scholar
  192. Terashima J, Bownes M (2004) Translating available food into the number of eggs laid by Drosophila melanogaster. Genetics 167:1711–1719. PubMedPubMedCentralCrossRefGoogle Scholar
  193. Thistle R, Cameron P, Ghorayshi A et al (2012) Contact chemoreceptors Mediate male-male repulsion and male-female attraction during Drosophila courtship. Cell 149:1140–1151. PubMedPubMedCentralCrossRefGoogle Scholar
  194. Tompkins L, Hall JC (1981) The different effects on courtship of volatile compounds from mated and virgin Drosophila females. J Insect Physiol 27:17–21. CrossRefGoogle Scholar
  195. Tompkins L, Hall JC, Hall LM (1980) Courtship-stimulating volatile compounds from normal and mutant Drosophila. J Insect Physiol 26:689–697. CrossRefGoogle Scholar
  196. Trienens M, Kraaijeveld K, Wertheim B (2017) Defensive repertoire of Drosophila larvae in response to toxic fungi. Mol Ecol 26:5043–5057. PubMedCrossRefGoogle Scholar
  197. Tsuda M, Aigaki T (2016) Evolution of sex-peptide in Drosophila. Fly 10:172–177. PubMedPubMedCentralCrossRefGoogle Scholar
  198. Tsuda M, Peyre J-B, Asano T, Aigaki T (2015) Visualizing molecular functions and cross-species activity of sex-peptide in Drosophila. Genetics 200:1161–1169. PubMedPubMedCentralCrossRefGoogle Scholar
  199. Vargas MA, Luo N, Yamaguchi A, Kapahi P (2010) A role for S6 kinase and serotonin in postmating dietary switch and balance of nutrients in D. melanogaster. Curr Biol 20:1006–1011. PubMedPubMedCentralCrossRefGoogle Scholar
  200. Walker SJ, Corrales-Carvajal VM, Ribeiro C (2015) Postmating circuitry modulates salt taste processing to increase reproductive output in Drosophila. Curr Biol 25:2621–2630. PubMedCrossRefGoogle Scholar
  201. Wang L, Han X, Mehren J et al (2011) Hierarchical chemosensory regulation of male-male social interactions in Drosophila. Nat Neurosci 14:757–762. PubMedPubMedCentralCrossRefGoogle Scholar
  202. Wertheim B (2005) Evolutionary ecology of communication signals that induce aggregative behaviour. Oikos 109:117–124. CrossRefGoogle Scholar
  203. Wertheim B, Dicke M, Vet LEM (2002a) Behavioural plasticity in support of a benefit for aggregation pheromone use in Drosophila melanogaster. Entomol Exp Appl 103:61–71CrossRefGoogle Scholar
  204. Wertheim B, Marchais J, Vet LEM, Dicke M (2002b) Allee effect in larval resource exploitation in Drosophila: an interaction among density of adults, larvae, and micro-organisms. Ecol Entomol 27:608–617. CrossRefGoogle Scholar
  205. Wertheim B, Vet LEM, Dicke M (2003) Increased risk of parasitism as ecological costs of using aggregation pheromones: laboratory and field study of Drosophila-Leptopilina interaction. Oikos 100:269–282. CrossRefGoogle Scholar
  206. Wertheim B, Allemand R, Vet LEM, Dicke M (2006) Effects of aggregation pheromone on individual behaviour and food web interactions: a field study on Drosophila. Ecol Entomol 31:216–226CrossRefGoogle Scholar
  207. West-Eberhard MJ (2014) Darwin's forgotten idea: The social essence of sexual selection. Neurosci Biobehav Rev 46:501–508. PubMedCrossRefGoogle Scholar
  208. Wicker C, Jallon JM (1995) Hormonal control of sex pheromone biosynthesis in Drosophila melanogaster. J Insect Physiol 41:65–70. CrossRefGoogle Scholar
  209. Wicker-Thomas C, Garrido D, Bontonou G et al (2015) Flexible origin of hydrocarbon/pheromone precursors in Drosophila melanogaster. J Lipid Res 56:2094–2101. PubMedPubMedCentralCrossRefGoogle Scholar
  210. Wigby S, Chapman T (2005) Sex peptide causes mating costs in female Drosophila melanogaster. Curr Biol 15:316–321. PubMedCrossRefGoogle Scholar
  211. Wigby S, Sirot LK, Linklater JR et al (2009) Seminal fluid protein allocation and male reproductive success. Curr Biol 19:751–757. PubMedPubMedCentralCrossRefGoogle Scholar
  212. Wigby S, Perry JC, Kim YH, Sirot LK (2016) Developmental environment mediates male seminal protein investment in Drosophila melanogaster. Funct Ecol 30:410–419. PubMedCrossRefGoogle Scholar
  213. Wink M, Schneider D (1990) Fate of plant-derived secondary metabolites in three moth species (Syntomis mogadorensis, Syntomeida epilais, and Creatonotos transiens). J Comp Physiol B 160:389–400.
  214. Wolf JB, Brodie ED III, Cheverud JM, et al (1998) Evolutionary consequences of indirect genetic effects. Trends Ecol Evol 13:64–69. doi:
  215. Xu P, Atkinson R, Jones DNM, Smith DP (2005) Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45:193–200. PubMedCrossRefGoogle Scholar
  216. Yamanaka N, Hua Y-J, Roller L et al (2010) Bombyx prothoracicostatic peptides activate the sex peptide receptor to regulate ecdysteroid biosynthesis. Proc Natl Acad Sci USA 107:2060–2065. PubMedCrossRefGoogle Scholar
  217. Yang CH, Belawat P, Hafen E et al (2008) Drosophila egg-laying site selection as a system to study simple decision-making processes. Science 319:1679–1683. PubMedPubMedCentralCrossRefGoogle Scholar
  218. Yang CH, Rumpf S, Xiang Y et al (2009) Control of the postmating behavioral switch in Drosophila females by internal sensory neurons. Neuron 61:519–526. PubMedPubMedCentralCrossRefGoogle Scholar
  219. Yapici N, Kim Y-J, Ribeiro C, Dickson BJ (2008) A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature 451:33–37. PubMedCrossRefGoogle Scholar
  220. Yew JY, Chung H (2015) Insect pheromones: An overview of function, form, and discovery. Prog Lipid Res 59:88–105. PubMedCrossRefGoogle Scholar
  221. Yew JY, Dreisewerd K, Luftmann H et al (2009) A new male sex pheromone and novel cuticular cues for chemical communication in Drosophila. Curr Biol 19:1245–1254. PubMedPubMedCentralCrossRefGoogle Scholar
  222. Zhang R, Clark AG, Fiumera AC (2013) Natural genetic variation in male reproductive genes contributes to nontransitivity of sperm competitive ability in Drosophila melanogaster. Mol Ecol 22:1400–1415. PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Science and EngineeringUniversity of GroningenGroningenNetherlands
  2. 2.Department of Molecular Biology and GeneticsCornell UniversityIthacaUSA

Personalised recommendations