Advertisement

Journal of Chemical Ecology

, Volume 44, Issue 4, pp 354–363 | Cite as

Attraction Pheromone of The Benthic Diatom Seminavis robusta: Studies on Structure-Activity Relationships

  • Christine Lembke
  • Daniel Stettin
  • Franziska Speck
  • Nico Ueberschaar
  • Sam De Decker
  • Wim Vyverman
  • Georg Pohnert
Article

Abstract

Recently the first pheromone of a marine diatom was identified to be the diketopiperazine (S,S)-diproline. This compound facilitates attraction between mating partners in the benthic diatom Seminavis robusta. Interestingly, sexualized S. robusta cells are attracted to both the natural pheromone (S,S)-diproline as well as to its enantiomer (R,R)-diproline. Usually stereospecificity is a prerequisite for successful substrate-receptor interactions, and especially pheromone perception is often highly enantioselective. Here we introduce a structure-activity relationship study, to learn more about the principles of pheromone reception in diatoms. We analyzed the activity of nine different diketopiperazines in attraction and interference assays. The pheromone diproline itself, as well as a pipecolic acid derived diketopiperazine with two expanded aliphatic ring systems, showed the highest attractivity. Hydroxylatoin of the aliphatic rings abolished any bioactivity. Diketopiperazines derived from acyclic amino acids were not attrative as well. All stereoisomers of both the diproline and the pipecolic acid derived diketopiperazine were purified by enantioselective high-performance liquid chromatography, and application in bioactivity tests confirmed that attraction pheromone perception in this diatom is indeed not stereospecific. However, the lack of activity of diketopiperazines derived from acyclic amino acids suggests a specificity that prevents misguidance to sources of other naturally occurring diketopiperazines.

Keywords

Structure-activity relationship Pheromone Enantiomers Diatoms Diketopiperazine 

Notes

Acknowledgements

The work was funded by the International Leibniz Research School for Microbial and Biomolecular Interactions, by the Jena School for Microbial Communication, by the German Research Foundation within the framework of the CRC 1127 “ChemBioSys”, the Flemish Research Foundation project TG.0374.11 N, the Ugent research grant BOF15/GOA/17 and the BCCM/DCG culture collection. The authors thank Thomas Wichard for discussions as well as Toni Krause and Philipp Stephan for practical support.

Supplementary material

10886_2018_944_MOESM1_ESM.docx (47.6 mb)
ESM 1 (DOCX 48710 kb)

References

  1. Basu S, Patil S, Mapleson D, Russo MT, Vitale L, Fevola C, Maumus F, Casotti R, Mock T, Caccamo M, Montresor M, Sanges R, Ferrante MI (2017) Finding a partner in the ocean: molecular and evolutionary bases of the response to sexual cues in a planktonic diatom. New Phytol 215:140–156.  https://doi.org/10.1111/nph.14557 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Behre J, Voigt R, Althofer I, Schuster S (2012) On the evolutionary significance of the size and planarity of the proline ring. Naturwissenschaften 99:789–799.  https://doi.org/10.1007/s00114-012-0960-y CrossRefPubMedGoogle Scholar
  3. Bondoc KGV, Lembke C, Vyverman W, Pohnert G (2016) Searching for a mate: pheromone-directed movement of the benthic diatom Seminavis robusta. Microbial Ecol 72:287–294.  https://doi.org/10.1007/s00248-016-0796-7 CrossRefGoogle Scholar
  4. Borthwick AD (2012) 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem Rev 112:3641–3716.  https://doi.org/10.1021/cr200398y CrossRefPubMedGoogle Scholar
  5. Chepurnov VA, Mann DG, Vyverman W, Sabbe K, Danielidis DB (2002) Sexual reproduction, mating system, and protoplast dynamics of Seminavis (Bacillariophyceae). J Phycol 38:1004–1019.  https://doi.org/10.1046/j.1529-8817.2002.t01-1-01233.x CrossRefGoogle Scholar
  6. Chepurnov VA, Mann DG, Sabbe K, Vyverman W (2004) Experimental studies on sexual reproduction in diatoms. Int Rev Cytol 237:91–154.  https://doi.org/10.1016/S0074-7696(04)37003-8 CrossRefPubMedGoogle Scholar
  7. Chepurnov VA, Mann DG, von Dassow P, Vanormelingen P, Gillard J, Inzé D, Sabbe K, Vyverman W (2008) In search of new tractable diatoms for experimental biology. BioEssays 30:692–702.  https://doi.org/10.1002/bies.20773 CrossRefPubMedGoogle Scholar
  8. De Rosa S, Mitova M, Tommonaro G (2003) Marine bacteria associated with sponge as source of cyclic peptides. Biomol Eng 20:311–316.  https://doi.org/10.1016/S1389-0344(03)00038-8 CrossRefPubMedGoogle Scholar
  9. Dubey R, Polaske NW, Nichol GS, Olenyuk B (2009) Efficient organocatalytic alpha-sulfenylation of substituted piperazine-2,5-diones. Tetrahedron Lett 50:4310–4313.  https://doi.org/10.1016/j.tetlet.2009.05.031 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Emery KJ, Tuttle T, Kennedy AR, Murphy JA (2016) C-C bond-forming reactions of ground-state aryl halides under reductive activation. Tetrahedron 72:7875–7887.  https://doi.org/10.1016/j.tet.2016.05.083 CrossRefGoogle Scholar
  11. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240CrossRefPubMedGoogle Scholar
  12. Frenkel J, Vyverman W, Pohnert G (2014a) Pheromone signaling during sexual reproduction in algae. Plant J 79:632–644.  https://doi.org/10.1111/tpj.12496 CrossRefPubMedGoogle Scholar
  13. Frenkel J, Wess C, Vyverman W, Pohnert G (2014b) Chiral separation of a diketopiperazine pheromone from marine diatoms using supercritical fluid chromatography. J Chromatogr B 951:58–61.  https://doi.org/10.1016/j.jchromb.2013.12.040 CrossRefGoogle Scholar
  14. Gillard J, Devos V, Huysman MJJ, de Veylder L, D'Hondt S, Martens C, Vanormelingen P, Vannerum K, Sabbe K, Chepurnov VA, Inze D, Vuylsteke M, Vyverman W (2008) Physiological and transcriptomic evidence for a close coupling between chloroplast ontogeny and cell cycle progression in the pennate diatom Seminavis robusta. Plant Physiol 148:1394–1411.  https://doi.org/10.1104/pp.108.122176 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gillard J, Frenkel J, Devos V, Sabbe K, Paul C, Rempt M, Inzé D, Pohnert G, Vuylsteke M, Vyverman W (2013) Metabolomics enables the structure elucidation of a diatom sex pheromone. Angew Chem Int Ed Engl 52:854–857.  https://doi.org/10.1002/anie.201208175 CrossRefPubMedGoogle Scholar
  16. Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals: proceedings — 1st conference on culture of marine invertebrate animals Greenport. Springer US, Boston, MA, pp 29–60.  https://doi.org/10.1007/978-1-4615-8714-9_3
  17. Honeywill C, Paterson D, Hagerthey S (2002) Determination of microphytobenthic biomass using pulse-amplitude modulated minimum fluorescence. Eur J Phycol 37:485–492.  https://doi.org/10.1017/S0967026202003888 CrossRefGoogle Scholar
  18. Jainta M, Nieger M, Brase S (2008) Microwave-assisted stereoselective one-pot synthesis of symmetrical and unsymmetrical 2,5-diketopiperazines from unprotected amino acids. Eur J Org Chem 2008(32):5418–5424.  https://doi.org/10.1002/ejoc.200800605 CrossRefGoogle Scholar
  19. Maier I, Muller DG, Boland W (1994) Spermatozoid chemotaxis in Laminaria digitata (Phaeophyceae). III Pheromone receptor specificity and threshold concentrations. Z Naturforsch (C) 49:601–606Google Scholar
  20. Maier I, Hertweck C, Boland W (2001) Stereochemical specificity of Lamoxirene, the sperm-releasing pheromone in kelp (Laminariales, Phaeophyceae). Biol Bull 201:121–125.  https://doi.org/10.2307/1543327 CrossRefPubMedGoogle Scholar
  21. Moeys S, Frenkel J, Lembke C, Gillard JTF, Devos V, van den Berge K, Bouillon B, Huysman MJJ, de Decker S, Scharf J, Bones A, Brembu T, Winge P, Sabbe K, Vuylsteke M, Clement L, de Veylder L, Pohnert G, Vyverman W (2016) A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta. Sci Rep 6:19252.  https://doi.org/10.1038/srep19252 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mori K (2007) Significance of chirality in pheromone science. Bioorg Med Chem 15:7505–7523.  https://doi.org/10.1016/j.bmc.2007.08.040 CrossRefPubMedGoogle Scholar
  23. Nakamura D, Kakiuchi K, Koga K, Shirai R (2006) Design and synthesis of novel C-2-symmetric chiral piperazines and an application to asymmetric acylation of sigma-symmetric 1,2-diols. Org Lett 8:6139–6142.  https://doi.org/10.1021/ol0626387 CrossRefPubMedGoogle Scholar
  24. Nonappa AK, Lahtinen M, Kolehmainen E (2011) Cyclic dipeptides: catalyst/promoter-free, rapid and environmentally benign cyclization of free amino acids. Green Chem 13:1203–1209.  https://doi.org/10.1039/c1gc15043j CrossRefGoogle Scholar
  25. Pierce AM, Pierce HD, Oehlschlager AC, Borden JH (1991) 1-Octen-3-ol, attractive semiochemical for foreign grain beetle, Ahasverus advena (Waltl) (Coleoptera, Cucujidae). J Chem Ecol 17:567–580.  https://doi.org/10.1007/bf00982127 CrossRefPubMedGoogle Scholar
  26. Pohnert G, Boland W (2002) The oxylipin chemistry of attraction and defense in brown algae and diatoms. Nat Prod Rep 19:108–122.  https://doi.org/10.1039/a806888g CrossRefPubMedGoogle Scholar
  27. Rappath DW (2005) Synthesis of 2-chloro-3,6-dialkyl pyrazines. Patent WO2005049583A1Google Scholar
  28. Sato S, Beakes G, Idei M, Nagumo T, Mann DG (2011) Novel sex cells and evidence for sex pheromones in diatoms. PLoS One 6:e26923.  https://doi.org/10.1371/journal.pone.0026923 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Zhou SZ, Doni E, Anderson GM, Kane RG, MacDougall SW, Ironmonger VM, Tuttle T, Murphy JA (2014) Identifying the roles of amino acids, alcohols and 1,2-diamines as mediators in coupling of haloarenes to arenes. J Am Chem Soc 136:17818–17826.  https://doi.org/10.1021/ja5101036 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Inorganic and Analytical Chemistry, Bioorganic AnalyticsFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Laboratory of Protistology and Aquatic Ecology, Department of BiologyUniversity GentGentBelgium
  3. 3.Max Planck Institute for Chemical EcologyJenaGermany

Personalised recommendations