Skip to main content

Phenotypic Plasticity of Cuticular Hydrocarbon Profiles in Insects

Abstract

The insect integument is covered by cuticular hydrocarbons (CHCs) which provide protection against environmental stresses, but are also used for communication. Here we review current knowledge on environmental and insect-internal factors which shape phenotypic plasticity of solitary living insects, especially herbivorous ones. We address the dynamics of changes which may occur within minutes, but may also last weeks, depending on the species and conditions. Two different modes of changes are suggested, i.e. stepwise and gradual. A switch between two distinct environments (e.g. host plant switch by phytophagous insects) results in stepwise formation of two distinct adaptive phenotypes, while a gradual environmental change (e.g. temperature gradients) induces a gradual change of numerous adaptive CHC phenotypes. We further discuss the ecological and evolutionary consequences of phenotypic plasticity of insect CHC profiles by addressing the question at which conditions is CHC phenotypic plasticity beneficial. The high plasticity of CHC profiles might be a trade-off for insects using CHCs for communication. We discuss how insects cope with the challenge to produce and “understand” a highly plastic, environmentally dependent CHC pattern that conveys reliable and comprehensible information. Finally, we outline how phenotypic plasticity of CHC profiles may promote speciation in insects that rely on CHCs for mate recognition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Akino T, Knapp JJ, Thomas JA, Elmes GW (1999) Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc R Soc Lond B 266:1419–1426

    CAS  Article  Google Scholar 

  • Akino T, Nakamura K, Wakamura S (2004) Diet-induced chemical phytomimesis by twig-like caterpillars of Biston robustum Butler (Lepidoptera: Geometridae). Chemoecology 14:165–174

    CAS  Article  Google Scholar 

  • Armold MT, Regnier FE (1975) A developmental study of the cuticular hydrocarbons of Sarcophaga bullata. J Insect Physiol 21:1827–1833

    CAS  PubMed  Article  Google Scholar 

  • Armold MT, Blomquist GJ, Jackson LL (1969) Cuticular lipids of insects—III. The surface lipids of the aquatic and terrestrial life forms of the big stonefly, Pteronarcys californica Newport. Comp Biochem Physiol 31:685–692

    CAS  Article  Google Scholar 

  • Bagnères A-G, Blomquist GJ (2010) Site of synthesis, mechanism of transport and selective deposition of hydrocarbons. In: Blomquist GJ, Bagnères, A-G (eds.). Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press, Cambridge, pp 75–99.

  • Baker JE, Nelson DR, Fatland C (1979a) Developmental changes in cuticular lipids of the black carpet beetle, Attagenus megatoma. Insect Biochem 9:335–339

    CAS  Article  Google Scholar 

  • Baker JE, Sukkestad DR, Nelson DR, Fatland C (1979b) Cuticular lipids of larvae and adults of the cigarette beetle, Lasioderma serricorne. Insect Biochem 9:603–611

    CAS  Article  Google Scholar 

  • Beros S, Foitzik S, Menzel FJ (2017) What are the mechanisms behind a parasite-induced decline in nestmate recognition in ants? J Chem Ecol 43:869–880

    CAS  PubMed  Article  Google Scholar 

  • Bilen J, Atallah J, Azanchi R, Levine JD, Riddiford LM (2013) Regulation of onset of female mating and sex pheromone production by juvenile hormone in Drosophila melanogaster. Proc Natl Acad Sci U S A 110:18321–18326

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Blomquist GJ, Bagnères A-G (2010) Introduction: history and overview of insect hydrocarbons. In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 3–18

    Chapter  Google Scholar 

  • Blomquist GJ, Jackson LL (1973) Incorporation of labelled dietary n-alkanes into cuticular lipids of the grasshopper Melanoplus sanguinipes. J Insect Physiol 19:1639–1647

    CAS  Article  Google Scholar 

  • Bontonou G, Denis B, Wicker-Thomas C (2013) Interaction between temperature and male pheromone in sexual isolation in Drosophila melanogaster. J Evol Biol 26:2008–2020

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Bontonou G, Shaik HA, Denis B, Wicker-Thomas C (2015) Acp70A regulates Drosophila pheromones through juvenile hormone induction. Insect Biochem Mol Biol 56:36–49

    CAS  PubMed  Article  Google Scholar 

  • Booksmythe I, Rundle HD, Arnqvist G (2017) Sexual dimorphism in epicuticular compounds despite similar sexual selection in sex role-reversed seed beetles. J Evol Biol 30:2005–2016

    CAS  PubMed  Article  Google Scholar 

  • Boughman JW (2002) How sensory drive can promote speciation. Trends Ecol Evol 17:571–577

    Article  Google Scholar 

  • Bousquet F, Chauvel I, Flaven-Pouchon J, Farine JP, Ferveur JF (2016) Dietary rescue of altered metabolism gene reveals unexpected Drosophila mating cues. J Lipid Res 57:443–450.

  • Braga M, Pinto Z, de Carvalho Queiroz MM, Blomquist G (2016) Effect of age on cuticular hydrocarbon profiles in adult Chrysomya putoria (Diptera: Calliphoridae). Forensic Sci Int 259:e37–e47

    Article  CAS  Google Scholar 

  • Chen N, Bai Y, Fan Y-L, Liu T-X (2017) Solid-phase microextraction-based cuticular hydrocarbon profiling for intraspecific delimitation in Acyrthosiphon pisum. PLoS One 12:e0184243

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Chown SL, Sorensen JG, Terblanche JS (2011) Water loss in insects: an environmental change perspective. J Insect Physiol 57:1070–1084

    CAS  PubMed  Article  Google Scholar 

  • Chung H, Carroll SB (2015) Wax, sex and the origin of species: dual roles of insect cuticular hydrocarbons in adaptation and mating. BioEssays 37:822–830

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer, Sunderland

    Google Scholar 

  • Dani FR, Jones GR, Corsi S, Beard R, Pradella D, Turillazzi S (2005) Nestmate recognition cues in the honey bee: differential importance of cuticular alkanes and alkenes. Chem Senses 30:477–489

    CAS  PubMed  Article  Google Scholar 

  • de Renobales M, Blomquist GJ (1983) A developmental study of the composition and biosynthesis of the cuticular hydrocarbons of Trichoplusia ni (Lepidoptera: Noctuidae). Insect Biochem 13:493–502

    Article  Google Scholar 

  • Delcourt M, Rundle HD (2011) Condition dependence of a multicomponent sexual display trait in Drosophila serrata. Am Nat 177:812–823

    PubMed  Article  Google Scholar 

  • Dembeck LM, Böröczky K, Huang W, Schal C, Anholt RR, Mackay TF (2015) Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster. elife 4:e09861

    PubMed  PubMed Central  Article  Google Scholar 

  • DeWitt TJ, Sih A, Wilson DS (1998) Costs and limits of phenotypic plasticity. Trends Ecol Evol 13:77–81

    CAS  PubMed  Article  Google Scholar 

  • Dillwith JW, Adams TS, Blomquist GJ (1983) Correlation of housefly sex pheromone production with ovarian development. J Insect Physiol 29:377–386

    CAS  Article  Google Scholar 

  • Drès M, Mallet J (2002) Host races in plant-feeding insects and their importance in sympatric speciation. Philos T Roy Soc B 357:471–492

    Article  Google Scholar 

  • Elmes GW, Akino T, Thomas JA, Clarke RT, Knapp JJ (2002) Interspecific differences in cuticular hydrocarbon profiles of Myrmica ants are sufficiently consistent to explain host specificity by Maculinea (large blue) butterflies. Oecologia 130:525–535

    CAS  PubMed  Article  Google Scholar 

  • Espelie KE, Bernays EA (1989) Diet-related differences in the cuticular lipids of Manduca sexta larvae. J Chem Ecol 15:2003–2017

    CAS  PubMed  Article  Google Scholar 

  • Espelie KE, Chapman RF, Sword GA (1994) Variation in the surface-lipids of the grasshopper, Schistocerca americana (Drury). Biochem Syst Ecol 22:563–575

    CAS  Article  Google Scholar 

  • Etges WJ, de Oliveira CC (2014) Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. X. Age-specific dynamics of adult epicuticular hydrocarbon expression in response to different host plants. Ecol Evol 4:2033–2045

    PubMed  PubMed Central  Google Scholar 

  • Etges WJ, Veenstra CL, Jackson LL (2006) Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. VII. Effects of larval dietary fatty acids on adult epicuticular hydrocarbons. J Chem Ecol 32:2629–2646

    CAS  PubMed  Article  Google Scholar 

  • Everaerts C, Farine J-P, Cobb M, Ferveur J-F (2010) Drosophila cuticular hydrocarbons revisited: mating status alters cuticular profiles. PLoS One 5:e9607

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Farine J-P, Ferveur J-F, Everaerts C (2012) Volatile Drosophila cuticular pheromones are affected by social but not sexual experience. PLoS One 7:e40396

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Fedina TY, Kuo T-H, Dreisewerd K, Dierick HA, Yew JY, Pletcher SD (2012) Dietary effects on cuticular hydrocarbons and sexual attractiveness in Drosophila. PLoS One 7:e49799

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Fedina TY, Arbuthnott D, Rundle HD, Promislow DEL, Pletcher SD (2017) Tissue-specific insulin signaling mediates female sexual attractiveness. PLoS Genet 13:e1006935

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Ferveur J (2005) Cuticular hydrocarbons: their evolution and roles in Drosophila pheromonal communication. Behav Genet 35:279–295

    PubMed  Article  Google Scholar 

  • Fujiwara-Tsujii N, Yasui H, Wakamura S (2013) Population differences in male responses to chemical mating cues in the white-spotted longicorn beetle, Anoplophora malasiaca. Chemoecology 23:113–120

    Article  Google Scholar 

  • Geiselhardt SF, Geiselhardt S, Peschke K (2006) Chemical mimicry of cuticular hydrocarbons – how does Eremostibes opacus gain access to breeding burrows of its host Parastizopus armaticeps (Coleoptera, Tenebrionidae)? Chemoecology 16:59–68

    CAS  Article  Google Scholar 

  • Geiselhardt S, Otte T, Hilker M (2009) The role of cuticular hydrocarbons in male mating behavior of the mustard leaf beetle, Phaedon cochleariae (F.) J Chem Ecol 35:1162–1171

    CAS  PubMed  Article  Google Scholar 

  • Geiselhardt SF, Geiselhardt S, Peschke K (2011) Congruence of epicuticular hydrocarbons and tarsal secretions as a principle in beetles. Chemoecology 21:181–186

    CAS  Article  Google Scholar 

  • Geiselhardt S, Otte T, Hilker M (2012) Looking for a similar partner: host plants shape mating preferences of herbivorous insects by altering their contact pheromones. Ecol Lett 15:971–977

    PubMed  Article  Google Scholar 

  • Gemeno C, Laserna N, Riba M, Valls J, Castañé C, Alomar O (2012) Cuticular hydrocarbons discriminate cryptic Macrolophus species (Hemiptera: Miridae). Bull Entomol Res 102:624–631

    CAS  PubMed  Article  Google Scholar 

  • Genin E, Jullien R, Perez F, Fuzeau-Braesch S (1986) Cuticular hydrocarbons of gregarious and solitary locusts Locusta migratoria cinerascens. J Chem Ecol 12:213–1238

    Article  Google Scholar 

  • Gershman SN, Rundle HD (2016) Level up: the expression of male sexually selected cuticular hydrocarbons is mediated by sexual experience. Anim Behav 112:69–177

    Article  Google Scholar 

  • Gershman SN, Rundle HD (2017) Crowd control: sex ratio affects sexually selected cuticular hydrocarbons in male Drosophila serrata. J Evol Biol 30:583–590

    CAS  PubMed  Article  Google Scholar 

  • Gershman SN, Toumishey E, Rundle HD (2014) Time flies: time of day and social environment affect cuticular hydrocarbon sexual displays in Drosophila serrata. Proc R Soc B 281:20140821

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394–407

    Article  Google Scholar 

  • Gibbs A, Mousseau TA (1994) Thermal acclimation and genetic variation in cuticular lipids of the lesser migratory grasshopper (Melanoplus sanguinipes) - effects of lipid-composition on biophysical properties. Physiol Zool 67:1523–1543

    CAS  Article  Google Scholar 

  • Gibbs A, Kuenzli M, Blomquist G (1995) Sex-related and age-related changes in the biophysical properties of cuticular lipids of the housefly, Musca domestica. Arch Insect Biochem 29:87–97

    CAS  Article  Google Scholar 

  • Gibbs AG, Louie AK, Ayala JA (1998) Effects of temperature on cuticular lipids and water balance in a desert Drosophila: is thermal acclimation beneficial? J Exp Biol 201:71–80

    CAS  PubMed  Google Scholar 

  • Gingrich JB (1975) Ultraviolet-induced changes in cuticular waxes of American cockroaches, Periplaneta americana (L.) (Dictyoptera, Blattaria, Blattidae). Can J Zool 53:1238–1240

    CAS  PubMed  Article  Google Scholar 

  • Hadley NF (1977) Epicuticular lipids of desert tenebrionid beetle, Eleodes armata - seasonal and acclimatory effects on composition. Insect Biochem 7:277–283

    CAS  Article  Google Scholar 

  • Hajek AE, St. Leger RJ (1994) Interactions between fungal pathogens and insect hosts. Annu Rev Entomol 39:293–322

    Article  Google Scholar 

  • Havens JA, Etges WJ (2013) Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. IX. Host plant and population specific epicuticular hydrocarbon expression influences mate choice and sexual selection. J Evol Biol 26:562–576

    CAS  PubMed  Article  Google Scholar 

  • Hebanowska E, Malinski E, Latowska A, Dubis E, Pihlaja K, Oksman P, Nawrot J, Szafranek J (1990) A comparison of cuticular hydrocarbons of larvae and beetles of the Tribolium destructor. Comp Biochem Physiol B 96:815–819

    Article  Google Scholar 

  • Heifetz Y, Miloslavski I, Aizenshtat Z, Applebaum SW (1998) Cuticular surface hydrocarbons of desert locust nymphs, Schistocerca gregaria, and their effect on phase behavior. J Chem Ecol 24:1033–1047

    CAS  Article  Google Scholar 

  • Henneken J, Goodger JQD, Jones TM, Elgar MA (2017) Diet-mediated pheromones and signature mixtures can enforce signal reliability. Front Ecol Evol 4:145

    Article  Google Scholar 

  • Howard RW (1998) Ontogenetic, reproductive, and nutritional effects on the cuticular hydrocarbons of the host-specific ectoparasitoid Cephalonomia tarsalis (hymenoptera: Bethylidae). Ann Entomol Soc Am 91:101–112

    CAS  Article  Google Scholar 

  • Howard RW (2001) Cuticular hydrocarbons of adult Pteromalus cerealellae (hymenoptera: Pteromalidae) and two larval hosts, Angoumois grain moth (Lepidoptera: Gelechiidae) and cowpea weevil (Coleptera: Bruchidae). Ann Entomol Soc Am 94:152–158

    CAS  Article  Google Scholar 

  • Howard RW, Baker JE (2003) Cuticular hydrocarbons and wax esters of the ectoparasitoid Habrobracon hebetor: ontogenetic, reproductive and nutritional effects. Arch Insect Biochem Physiol 53:1–18

    CAS  PubMed  Article  Google Scholar 

  • Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393

    CAS  PubMed  Article  Google Scholar 

  • Howard RW, Pérez-Lachaud G (2002) Cuticular hydrocarbons of the ectoparasitic wasp Cephalonomia hyalinipennis (hymenoptera: Bethylidae) and its alternative host, the stored product pest Caulophilus oryzae (Coleoptera: Curculionidae). Arch Insect Biochem Physiol 50:75–84

    CAS  PubMed  Article  Google Scholar 

  • Howard RW, Akre RD, Garnett WB (1990) Chemical mimicry in an obligate predator of carpenter ants (hymenoptera: Formicidae). Ann Entomol Soc Am 83:607–616

    CAS  Article  Google Scholar 

  • Howard RW, Howard CD, Colquhoun S (1995) Ontogenic and environmentally-induced changes in cuticular hydrocarbons of Oryzaephilus surinamensis (Coleoptera: Cucujidae). Ann Entomol Soc Am 88:485–495

    CAS  Article  Google Scholar 

  • Ingleby FC (2015) Insect cuticular hydrocarbons as dynamic traits in sexual communication. Insects 6:732–742

    PubMed  PubMed Central  Article  Google Scholar 

  • Ingleby FC, Hunt J, Hosken DJ (2010) The role of genotype-by-environment interactions in sexual selection. J Evol Biol 23:2031–2045

    CAS  PubMed  Article  Google Scholar 

  • Ingleby FC, Hosken DJ, Flowers K, Hawkes MF, Lane SM, Rapkin J, Dworkin I, Hunt J (2013) Genotype-by-environment interactions for cuticular hydrocarbon expression in Drosophila simulans. J Evol Biol 26:94–107

    CAS  PubMed  Article  Google Scholar 

  • Ingleby FC, Hosken DJ, Flowers K, Hawkes MF, Lane SM, Rapkin J, House CM, Hunt J (2014) Environmental heterogeneity multivariate sexual selection and genetic constraints on cuticular hydrocarbons in Drosophila simulans. J Evol Biol 27:700–713

    CAS  PubMed  Article  Google Scholar 

  • Jackson LL (1983) Cuticular hydrocarbons of the milkweed bug, Oncopeltus fasciatus by age and sex. Insect Biochem 13:19–25

    CAS  Article  Google Scholar 

  • Jackson LL, Bartelt RJ (1986) Cuticular hydrocarbons of Drosophila virilis: comparison by age and sex. Insect Biochem 16:433–439

    CAS  Article  Google Scholar 

  • Juárez MP, Brenner RR (1985) The epicuticular lipids of Triatoma infestans—II. Hydrocarbon dynamics. Comp Biochem Physiol 82B:93–803

    Google Scholar 

  • Jurenka RA, Holland D, Krafsur ES (1998) Hydrocarbon profiles of diapausing and reproductive adult face flies (Musca autumnalis). Arch Insect Biochem Physiol 37:206–214

    CAS  Article  Google Scholar 

  • Kather R, Martin SJ (2015) Evolution of cuticular hydrocarbons in the hymenoptera: a meta-analysis. J Chem Ecol 41:871–883

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kent C, Azanchi R, Smith B, Chu A, Levine J (2007) A model-based analysis of chemical and temporal patterns of cuticular hydrocarbons in male Drosophila melanogaster. PLoS One 2:e962

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Kent C, Azanchi R, Smith B, Formosa A, Levine JD (2008) Social context influences chemical communication in D. melanogaster males. Curr Biol 18:1384–1389

    CAS  PubMed  Article  Google Scholar 

  • Khidr SK, Linforth RST, Hardy ICW (2013) Genetic and environmental influences on the cuticular hydrocarbon profiles of Goniozus wasps. Entomol Exp Appl 147:175–185

    CAS  Article  Google Scholar 

  • Krupp JJ, Kent C, Billeter JC, Azanchi R, So AKC, Schonfeld JA, Smith BP, Lucas C, Levine JD (2008) Social experience modifies pheromone expression and mating behavior in male Drosophila melanogaster. Curr Biol 18:1373–1383

    CAS  PubMed  Article  Google Scholar 

  • Kühbandner S, Hacker N, Niedermayer S, Steidle JLM, Ruther J (2012) Composition of cuticular lipids in the pteromalid wasp Lariophagus distinguendus is host dependent. Bull Entomol Res 102:610–617

    PubMed  Article  CAS  Google Scholar 

  • Kuo T-H, Yew JY, Fedina TY, Dreisewerd K, Dierick HA, Pletcher SD (2012) Aging modulates cuticular hydrocarbons and sexual attractiveness in Drosophila melanogaster. J Exp Biol 215:814–821

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kwan L, Rundle HD (2010) Adaptation to desiccation fails to generate pre- and postmating isolation in replicate Drosophila melanogaster laboratory populations. Evolution 64:710–723

    PubMed  Article  Google Scholar 

  • Lebreton S, Mansourian S, Bigarreau J, Dekker T (2016) The adipokinetic hormone receptor modulates sexual behavior, pheromone perception and pheromone production in a sex-specific and starvation-dependent manner in Drosophila melanogaster. Front Ecol Evol 3:151

    Article  Google Scholar 

  • Lecuona R, Riba G, Cassier P, Clement JL (1991) Alterations of insect epicuticular hydrocarbons during infection with Beauveria bassiana or B. brongniartii. J Invertebr Pathol 58:10–18

    CAS  Article  Google Scholar 

  • Leftwich PT, Clarke NVE, Hutchings MI, Chapman T (2017) Gut microbiomes and reproductive isolation in Drosophila. P Natl Acad Sci USA 114:12767–12772

    CAS  Article  Google Scholar 

  • Leonhardt SD, Menzel F, Nehring V, Schmitt T (2016) Ecology and evolution of communication in social insects. Cell 164:1277–1287

    CAS  PubMed  Article  Google Scholar 

  • Mant J, Brändli C, Vereecken NJ, Schultz CM, Francke W, Schiestl FP (2005) Cuticular hydrocarbons as sex pheromone of the bee Colletes cunicularis and the key to its mimicry by the sexually deceptive orchid, Ophrys exaltata. J Chem Ecol 31:1765–1787

    CAS  PubMed  Article  Google Scholar 

  • Martin S, Drijfhout F (2009) A review of ant cuticular hydrocarbons. J Chem Ecol 35:1151–1161

    CAS  PubMed  Article  Google Scholar 

  • Mas F, Kölliker M (2011) An offspring signal of quality affects the timing of future parental reproduction. Biol Lett 7:352–354

    PubMed  PubMed Central  Article  Google Scholar 

  • Mas F, Haynes KF, Kölliker M (2009) A chemical signal of offspring quality affects maternal care in a social insect. Proc R Soc B 276:2847–2853

    PubMed  PubMed Central  Article  Google Scholar 

  • Mateo JM (2010) Self-referent phenotype matching and long-term maintenance of kin recognition. Anim Behav 80:929–935

    Article  Google Scholar 

  • Menzel F, Blaimer BB, Schmitt T (2017) How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait. P Roy Soc B-Biol Sci 284:20161727

    Article  CAS  Google Scholar 

  • Moczek AP (2010) Phenotypic plasticity and diversity in insects. Philos T Roy Soc B 365:593–603

    Article  Google Scholar 

  • Moczek AP, Sultan S, Foster S, Ledon-Rettig C, Dworkin I, Nijhout HF, Abouheif E, Pfennig DW (2011) The role of developmental plasticity in evolutionary innovation. P Roy Soc B 278:2705–2713

    Article  Google Scholar 

  • Mody NV, Hedin PA, Neel WW, Miles DH (1975) Hydrocarbons from males, females and larvae of pecan weevil: Curculio caryae (horn). Lipids 10:117–119

    CAS  PubMed  Article  Google Scholar 

  • Moore HE, Butcher JB, Adam CD, Day CD, Drijfhout FP (2016) Age estimation of Calliphora (Diptera: Calliphoridae) larvae using cuticular hydrocarbon analysis and artificial neural networks. Forensic Sci Int 268:81–91

    CAS  PubMed  Article  Google Scholar 

  • Moore HE, Pechal JL, Benbow ME, Drijfhout FP (2017) The potential use of cuticular hydrocarbons and multivariate analysis to age empty puparial cases of Calliphora vicina and Lucilia sericata. Sci Rep 7:1933

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Mpuru S, Blomquist GJ, Schal C, Roux M, Kuenzli M, Dusticier G, Clement JL, Bagneres AG (2001) Effect of age and sex on the production of internal and external hydrocarbons and pheromones in the housefly, Musca domestica. Insect Biochem Mol Biol 31:139–155

    CAS  PubMed  Article  Google Scholar 

  • Napolitano R, Juárez MP (1997) Entomopathogenous fungi degrade epicuticular hydrocarbons of Triatoma infestans. Arch Biochem Biophys 344:208–214

    CAS  PubMed  Article  Google Scholar 

  • Nelson DR, Lee RE (2004) Cuticular lipids and desiccation resistance in overwintering larvae of the goldenrod gall fly, Eurosta solidaginis (Diptera: Tephritidae). Comp Biochem Physiol B 138:313–320

    PubMed  Article  CAS  Google Scholar 

  • Nelson DR, Adams TS, Fatland CL (2003) Hydrocarbons in the surface wax of eggs and adults of the Colorado potato beetle, Leptinotarsa decemlineata. Comp Biochem Physiol B 134:447–466

    PubMed  Article  CAS  Google Scholar 

  • Nielsen ML, Holman L (2012) Terminal investment in multiple sexual signals: immune-challenged males produce more attractive pheromones. Funct Ecol 26:20–28

    Article  Google Scholar 

  • Noorman N, Den Otter CJ (2002) Effects of relative humidity, temperature, and population density on production of cuticular hydrocarbons in housefly Musca domestica L. J Chem Ecol 28:1819–1829

    CAS  PubMed  Article  Google Scholar 

  • Oi CA, van Zweden JS, Oliveira RC, Van Oystaeyen A, Nascimento FS, Wenseleers T (2015) The origin and evolution of social insect queen pheromones: novel hypotheses and outstanding problems. BioEssays 37:808–821

    CAS  PubMed  Article  Google Scholar 

  • Otte T, Hilker M, Geiselhardt S (2015) The effect of dietary fatty acids on the cuticular hydrocarbon phenotype of an herbivorous insect and consequences for mate recognition. J Chem Ecol 41:32–43

    CAS  PubMed  Article  Google Scholar 

  • Otte T, Hilker M, Geiselhardt S (2016) Phenotypic plasticity of mate recognition systems prevents sexual interference between two sympatric leaf beetle species. Evolution 70:1819–1828

    CAS  PubMed  Article  Google Scholar 

  • Paulmier I, Bagneres AG, Afonso CMM, Dusticier G, Riviere G, Clement JL (1999) Alkenes as a sexual pheromone in the alfalfa leaf-cutter bee Megachile rotundata. J Chem Ecol 25:471–490

    CAS  Article  Google Scholar 

  • Pennanec'h M, Bricard L, Kunesch G, Jallon JM (1997) Incorporation of fatty acids into cuticular hydrocarbons of male and female Drosophila melanogaster. J Insect Physiol 43:1111–1116

    PubMed  Article  Google Scholar 

  • Peschke K (1985) Immature males of Aleochara curtula avoid intrasexual aggression by producing the female sex pheromone. Naturwissenschaften 72:274–275

    CAS  PubMed  Article  Google Scholar 

  • Peschke K (1987a) Male aggression, female mimicry and female choice in the rove beetle, Aleochara curtula (Coleoptera, Staphylinidae). Ethology 75:265–284

    Article  Google Scholar 

  • Peschke K (1987b) Cuticular hydrocarbons regulate mate recognition, male aggression, and female choice of the rove beetle, Aleochara curtula. J Chem Ecol 13:1993–2008

    CAS  PubMed  Article  Google Scholar 

  • Petfield D, Chenoweth SF, Rundle HD, Blows MW (2005) Genetic variance in female condition predicts indirect genetic variance in male sexual display traits. P Natl Acad Sci USA 102:6045–6050

    CAS  Article  Google Scholar 

  • Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP (2010) Phenotypic plasticity's impacts on diversification and speciation. Trends Ecol Evol 25:459–467

    PubMed  Article  Google Scholar 

  • Pigliucci M, Murren CJ, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209:2362–2367

    PubMed  Article  Google Scholar 

  • Piskorski R, Trematerra P, Dorn S (2010) Cuticular hydrocarbon profiles of codling moth larvae, Cydia pomonella (Lepidoptera: Tortricidae), reflect those of their host plant species. Biol J Linn Soc 101:376–384

    Article  Google Scholar 

  • Polerstock AR, Eigenbrode SD, Klowden MJ (2002) Mating alters the cuticular hydrocarbons of female Anopheles gambiae Sensu stricto and Aedes aegypti (Diptera: Culicidae). J Med Entomol 39:545–552

    CAS  PubMed  Article  Google Scholar 

  • Polidori C, Giordani I, Wurdack M, Tormos J, Asís JD, Schmitt T (2017) Post-mating shift towards longer-chain cuticular hydrocarbons drastically reduces female attractiveness to males in a digger wasp. J Insect Physiol 100:119–127

    CAS  PubMed  Article  Google Scholar 

  • Pomonis JG (1989) Cuticular hydrocarbons of the screwworm, Cochliomyia hominivorax (Diptera: Calliphoridae). Isolation, identification, and quantification as a function of age, sex, and irradiation. J Chem Ecol 15:2301–2317

    CAS  PubMed  Article  Google Scholar 

  • Portugal AHA, Trigo JR (2005) Similarity of cuticular lipids between a caterpillar and its host plant: a way to make prey undetectable for predatory ants? J Chem Ecol 31:2551–2261

    PubMed  Article  CAS  Google Scholar 

  • Rajpurohit S, Hanus R, Vrkoslav V, Behrman EL, Bergland AO, Petrov D, Cvačka J, Schmidt PS (2017) Adaptive dynamics of cuticular hydrocarbons in Drosophila. J Evol Biol 30:66–80

    CAS  PubMed  Article  Google Scholar 

  • Reylea RA (2002) Costs of phenotypic plasticity. Am Nat 159:272–282

    Article  Google Scholar 

  • Rouault JD, Marican C, Wicker-Thomas C, Jallon JM (2004) Relations between cuticular hydrocarbon (HC) polymorphism, resistance against desiccation and breeding temperature; a model for HC evolution in D. melanogaster and D. simulans. Genetica 120:195–212

    PubMed  Article  Google Scholar 

  • Roux O, Gers C, Legal L (2008) Ontogenetic study of three Calliphoridae of forensic importance through cuticular hydrocarbon analysis. Med Vet Entomol 22:309–317

    CAS  PubMed  Article  Google Scholar 

  • Rundle HD, Chenoweth SF, Doughty P, Blows MW (2005) Divergent selection and the evolution of signal traits and mating preferences. PLoS Biol 3:1988–1995

    CAS  Article  Google Scholar 

  • Ruther J, Döring M, Steiner S (2011) Cuticular hydrocarbons as contact sex pheromone in the parasitoid Dibrachys cavus. Entomol Exp Appl 140:59–68

    Article  Google Scholar 

  • Salamin N, Wuest RO, Lavergne S, Thuiller W, Pearman PB (2010) Assessing rapid evolution in a changing environment. Trends Ecol Evol 25:692–698

    PubMed  Article  Google Scholar 

  • Sappington TW, Taylor OR (1990) Developmental and environmental sources of pheromone variation in Colias eurytheme butterflies. J Chem Ecol 16:2771–2786

    CAS  PubMed  Article  Google Scholar 

  • Savarit F, Ferveur J-F (2002) Temperature affects the ontogeny of sexually dimorphic cuticular hydrocarbons in Drosophila melanogaster. J Exp Biol 205:3241–3249

    CAS  PubMed  Google Scholar 

  • Schal C, Gu X, Burns EL, Blomquist GJ (1994) Patterns of biosynthesis and accumulation of hydrocarbons and contact sex pheromone in the female German cockroach, Blattella germanica. Arch Insect Biochem Physiol 25:375–391

    CAS  PubMed  Article  Google Scholar 

  • Schal C, Sevala VL, Young HP, Bachmann JAS (1998) Sites of synthesis and transport pathways of insect hydrocarbons: cuticle and ovary as target tissues. Am Zool 38:382–393

    CAS  Article  Google Scholar 

  • Schlichting CD, Pigliucci M (1998) Phenotypic evolution: a reaction norm perspective. Sinauer Associates, Sunderland

    Google Scholar 

  • Schönrogge K, Wardlaw JC, Peters AJ, Everett S, Thomas A, Elmes GW (2004) Changes in chemical signature and host specificity from larval retrieval to full social integration in the myrmecophilous butterfly Maculinea rebeli. J Chem Ecol 30:91–107

    PubMed  Article  Google Scholar 

  • Scott MP, Madjid K, Orians CM (2008) Breeding alters cuticular hydrocarbons and mediates partner recognition by burying beetles. Anim Behav 76:507–513

    Article  Google Scholar 

  • Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. P Natl Acad Sci USA 107:20051–20056

    CAS  Article  Google Scholar 

  • Simmons LW, Alcock J, Reeder A (2003) The role of cuticular hydrocarbons in male attraction and repulsion by female Dawson's burrowing bee, Amegilla dawsoni. Anim Behav 66:677–685

    Article  Google Scholar 

  • Smadja C, Butlin RK (2009) On the scent of speciation: the chemosensory system and its role in premating isolation. Heredity 102:77–97

    CAS  PubMed  Article  Google Scholar 

  • Smith AA, Liebig J (2017) The evolution of cuticular fertility signals in eusocial insects. Curr Opin Insect Sci 22:79–84

    PubMed  Article  Google Scholar 

  • Snell-Rood EC (2012) Selective processes in development: implications for the costs and benefits of phenotypic plasticity. Integr Comp Biol 52:31–42

    PubMed  Article  Google Scholar 

  • Snell-Rood EC, Van Dyken JD, Cruickshank T, Wade MJ, Moczek AP (2010) Toward a population genetic framework of developmental evolution: the costs, limits, and consequences of phenotypic plasticity. BioEssays 32:71–81

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Steiger S, Peschke K, Francke W, Muller J (2007) The smell of parents: breeding status influences cuticular hydrocarbon pattern in the burying beetle Nicrophorus vespilloides. P Roy Soc B-Biol Sci 274:2211–2220

    CAS  Article  Google Scholar 

  • Steiger S, Peschke K, Muller JK (2008) Correlated changes in breeding status and polyunsaturated cuticular hydrocarbons: the chemical basis of nestmate recognition in the burying beetle Nicrophorus vespilloides? Behav Ecol Sociobiol 62:1053–1060

    Article  Google Scholar 

  • Steiner S, Steidle JLM, Ruther J (2005) Female sex pheromone in immature insect males: a case of pre-emergence chemical mimicry? Behav Ecol Sociobiol 58:111–120

    Article  Google Scholar 

  • Steiner S, Mumm R, Ruther J (2007) Courtship pheromones in parasitic wasps: comparison of bioactive and inactive hydrocarbon profiles by multivariate statistical methods. J Chem Ecol 33:825–838

    CAS  PubMed  Article  Google Scholar 

  • Stennett MD, Etges WJ (1997) Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. III. Epicuticular hydrocarbon variation is determined by use of different host plants in Drosophila mojavensis and Drosophila arizonae. J Chem Ecol 23:2803–2824

    CAS  Article  Google Scholar 

  • Stinziano JR, Sové RJ, Rundle HD, Sinclair BJ (2015) Rapid desiccation hardening changes the cuticular hydrocarbon profile of Drosophila melanogaster. Comp Biochem Physiol A 180:38–42

    CAS  Article  Google Scholar 

  • Thomas ML, Simmons LW (2009) Male dominance influences pheromone expression, ejaculate quality, and fertilization success in the Australian field cricket, Teleogryllus oceanicus. Behav Ecol 20:1118–1124

    Article  Google Scholar 

  • Thomas ML, Simmons LW (2011) Short-term phenotypic plasticity in long-chain cuticular hydrocarbons. P Roy Soc B-Biol Sci 278:3123–3128

    CAS  Article  Google Scholar 

  • Thomas ML, Gray B, Simmons LW (2011) Male crickets alter the relative expression of cuticular hydrocarbons when exposed to different acoustic environments. Anim Behav 82:49–53

    Article  Google Scholar 

  • Thomas JA, Elmes GW, Sielezniew M, Stankiewicz-Fiedurek A, Simcox DJ, Settele J, Schönrogge K (2013) Mimetic host shifts in an endangered social parasite of ants. Proc R Soc B 280:20122336

    PubMed  PubMed Central  Article  Google Scholar 

  • Toolson EC (1982) Effects of rearing temperature on cuticle permeability and epicuticular lipid composition in Drosophila pseudoobscura. J Exp Zool 222:249–253

    CAS  Article  Google Scholar 

  • Toolson EC, Kuper-Simbron R (1989) Laboratory evolution of epicuticular hydrocarbon composition and cuticular permeability in Drosophila pseudoobscura: effects on sexual dimorphism and thermal-acclimation ability. Evolution 43:468–473

    PubMed  Google Scholar 

  • Toolson EC, Markow TA, Jackson LL, Howard RW (1990) Epicuticular hydrocarbon composition of wild and laboratory-reared Drosophila mojavensis Patterson and crow (Diptera: Drosophilidae). Ann Entomol Soc Am 83:1165–1176

    CAS  Article  Google Scholar 

  • Trabalon M, Campan M, Clémenl J-L, Thon B, Lange C, Lefevre J (1988) Changes in cuticular hydrocarbon composition in relation to age and sexual behavior in the female Calliphora vomitoria (Diptera). Behav Process 17:107–115

    CAS  Article  Google Scholar 

  • Tregenza T, Buckley S, Pritchard V, Butlin R (2000) Inter- and intrapopulation effects of sex and age on epicuticular composition of meadow grasshopper, Chorthippus parallelus. J Chem Ecol 26:257–278

    CAS  Article  Google Scholar 

  • Via S, Gomulkiewicz R, Dejong G, Scheiner SM, Schlichting CD, Vantienderen PH (1995) Adaptive phenotypic plasticity - consensus and controversy. Trends Ecol Evol 10:212–217

  • Wang Y, Yu Z, Zhang J, Moussian B (2016) Regionalization of surface lipids in insects. P Roy Soc B-Biol Sci 283:20152994

    Article  CAS  Google Scholar 

  • Ward HKE (2017) The genetic and environmental basis for CHC biosynthesis in Drosophila. Electronic Thesis and Dissertation Repository 4900 http://ir.lib.uwo.ca/etd/4900

  • Weddle CB, Mitchell C, Bay SK, Sakaluk SK, Hunt J (2012) Sex-specific genotype-by-environment interactions for cuticular hydrocarbon expression in decorated crickets Gryllodes sigillatus: implications for the evolution of signal reliability. J Evol Biol 25:2112−2125

    Article  CAS  Google Scholar 

  • Weddle CB, Steiger S, Hamaker CG, Ower GD, Mitchell C, Sakaluk SK, Hunt J (2013) Cuticular hydrocarbons as a basis for chemosensory self-referencing in crickets: a potentially universal mechanism facilitating polyandry in insects. Ecol Lett 16:346–353

    PubMed  Article  Google Scholar 

  • Weiss I, Rössler T, Hofferberth J, Brummer M, Ruther J, Stökl J (2013) A nonspecific defensive compound evolves into a competition-avoidance cue and a female sex-pheromone. Nat Commun 4:2767

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Wicker C, Jallon J-M (1995a) Hormonal control of sex pheromone biosynthesis in Drosophila melanogaster. J Insect Physiol 41:65–70

    CAS  Article  Google Scholar 

  • Wicker C, Jallon J-M (1995b) Influence of ovary and ecdysteroids on pheromone biosynthesis in Drosophila melanogaster (Diptera: Drosophilidae). Eur J Entomol 92:197–202

    CAS  Google Scholar 

  • Wong JW, Lucas C, Kölliker M (2014a) Cues of maternal condition influence offspring selfishness. PLoS One 9:e87214

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Wong JW, Meunier J, Lucas C, Kolliker M (2014b) Paternal signature in kin recognition cues of a social insect: concealed in juveniles, revealed in adults. P Roy Soc B 281:20141236

    Article  CAS  Google Scholar 

  • Wund MA (2012) Assessing the impacts of phenotypic plasticity on evolution. Integr Comp Biol 52:5–15

    PubMed  Article  Google Scholar 

  • Xue H-J, Wei J-N, Magalhães S, Zhang B, Song K-Q, Liu J, Li W-Z, Yang X-K (2016) Contact pheromones of 2 sympatric beetles are modified by the host plant and affect mate choice. Behav Ecol 27:895–902

    CAS  Article  Google Scholar 

  • Yocum GD, Buckner JS, Fatland CL (2011) A comparison of internal and external lipids of nondiapausing and diapause initiation phase adult Colorado potato beetles, Leptinotarsa decemlineata. Comp Biochem Physiol B 159:163–170

    PubMed  Article  CAS  Google Scholar 

  • Yoon C, Yang J-O, Youn Y-N, Kim G-H (2012) Changes in cuticular hydrocarbons in different developmental stages of the bean bug, Riptortus pedestris (Hemiptera: Alydidae). J Asia Pac Entomol 15:579–587

    Article  Google Scholar 

  • Zhu GH, Ye GY, Hu C, Xu XH, Li K (2006) Development changes of cuticular hydrocarbons in Chrysomya rufifacies larvae: potential for determining larval age. Med Vet Entomol 20:438–444

    CAS  PubMed  Article  Google Scholar 

  • Zurek L, Weston DW, Krasnoff SB, Schal C (2002) Effect of the entomopathogenic fungus, Entomophthora muscae (Zygomycetes: Entomophthoraceae), on sex pheromone and cuticular hydrocarbons of the house fly, Musca domestica. J Invertebr Pathol 80:171–176

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Geiselhardt.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Otte, T., Hilker, M. & Geiselhardt, S. Phenotypic Plasticity of Cuticular Hydrocarbon Profiles in Insects. J Chem Ecol 44, 235–247 (2018). https://doi.org/10.1007/s10886-018-0934-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-018-0934-4

Keywords

  • Assortative mating
  • Chemical communication
  • Mate recognition
  • Sensory drive
  • Ecological speciation
  • Self-referent phenotype matching