Journal of Chemical Ecology

, Volume 44, Issue 3, pp 299–311 | Cite as

Synthesis, Bioassays and Field Evaluation of Hydroxycoumarins and their Alkyl Derivatives as Repellents or Kairomones for Aedes albopictus Skuse (Diptera: Culicidae)

  • Tovo Mbolatiana Andrianjafy
  • Lala Harivelo Ravaomanarivo
  • Voahangy Vestalys Ramanandraibe
  • Maonja Finaritra Rakotondramanga
  • Patrick Mavingui
  • Marc Lemaire
Article
  • 55 Downloads

Abstract

In recent years, a significant increase in mosquito-borne diseases has been recorded worldwide. Faced with the limitations of existing methods for controlling the vector mosquito population, the development of attractants to bait traps and repellents to limit host-vector contacts could be promising and environmentally-friendly control strategies. The purpose of this study was to evaluate the effect of hydroxycoumarins and their alkyls derivatives against Aedes albopictus, the main vector of several arboviruses. Synthesis, bioassays and field trials were carried out in Madagascar. The results showed that 3, 4 and 6-hydroxycoumarins are attractive to this mosquito, 4-hydroxycoumarin being the most effective both in the laboratory and under field conditions. In addition, a good synergistic effect was found with octenol to attract mosquitoes and especially Ae. albopictus in comparison to other mosquito species living in sympatry. On the contrary, the 4-s-butoxycoumarin and 4-s-pentoxycoumarin derivatives had a repellent effect with the former showing the most significant effect. Further optimization of the dose and structure of these products will be carried out in order to maximize their utility for the control of Ae. albopictus and other mosquitoes.

Keywords

Aedes albopictus Vector Arbovirus Attractant Bioassay Field trials Hydroxycoumarins Repellent Synthesis 

References

  1. Andrianjafy TM, Ravaomanarivo LH, Rakotondramanga FM, Ramanandraibe VV, Mavingui P, Lemaire M (2017) New bioassay to evaluate repellency and attractively of chemical products against adults mosquitoes Aedes albopictus and Culex quinquefasciatus. Ann Community Med Pract 3:1020Google Scholar
  2. Bernier UR, Kline DL, Posey KH, Booth MM, Yost RA, Barnard DR (2003) Synergistic attraction of Aedes aegypti to binary blends of L-lactic acid and acetone, dichloromethane, or dimethyl disulfide. J Med Entomol 40:653–656CrossRefPubMedGoogle Scholar
  3. Bernier UR, Kline DL, Posey KH (2007) Human emanations and related natural compounds that inhibit mosquito host-finding abilities. In: Debboun principles, methods, and uses. CRC Press, Boca Raton, pp 77–100Google Scholar
  4. Carzola C, Pfordt E, Duclos MC, Metay E, Lemaire M (2011) New approaches for unsymmetrical ethers synthesis. Direct synthesis of ether by nucleophilic substitution phenol substrate. Green Chem 13:2482CrossRefGoogle Scholar
  5. Chauvin RAJ, Mentzer C (1952) Procédé de protection des végétaux contre les acridiens. Patent N° 1.003.646Google Scholar
  6. Cilek JE, Hallmon CF, Johnson R (2011) Semi-field comparison of BG lures nonanal and octen-3-ol to attract adult mosquitoes in Northwestern Florida. J Am Mosq Control Assoc 27:393–397CrossRefPubMedGoogle Scholar
  7. Cork A (1996) Olfactory basis of host location by mosquitoes and other haematophagous Diptera. In: Bock GR, Cardew G (eds) Olfaction in mosquito-host interactions. Ciba Foundation Symposium 200. John Wiley & Sons, New York, pp 71–88Google Scholar
  8. Dennett JA, Vessey NY, Parsons RE (2004) A comparison of seven traps used for collection of Aedes albopictus and Aedes aegypti originating from a large tire repository in Harris County (Houston), Texas. J Am Mosq Control Assoc 20:342–349PubMedGoogle Scholar
  9. Edwards FW (1920) Notes on the mosquitoes of Madagascar, Mauritius and Reunion. Bull Entomol Res 11:133–138CrossRefGoogle Scholar
  10. Farajollahi A, Kesavaraju B, Price DC, Williams GM, Healy SP, Gaugler R, Nelder MP (2009) Field efficacy of BG-Sentinel and industry-standard traps for Aedes albopictus (Diptera: Culicidae) and West Nile Virus surveillance. J Med Entomol 46:919–925CrossRefPubMedGoogle Scholar
  11. Faye O, Freire CCM, Iamarino A, Faye O, de Oliveira JVC, Diallo M et al (2014) Molecular evolution of Zika virus during its emergence in the 20th century. PLoS Negl Trop Dis 8:e2636CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fradin MS (1998) Mosquitoes and mosquito repellents: a clinician’s guide. Ann Intern Med 128:931–940CrossRefPubMedGoogle Scholar
  13. Fradin MS, Day JF (2002) Comparative efficacy of insect repellents against mosquito bites. NEJM 347:13–18CrossRefPubMedGoogle Scholar
  14. Frances SB, Klein TA, Hildebrandt DW, Burge R, Noigamol C, Eikarat N et al (1996) Laboratory and field evaluation of DEET, CIC-4, and AI3-3722O against Anopheles dirus (Diptera: Culicidae) in Thailand. J Med Entomol 33:511–515CrossRefPubMedGoogle Scholar
  15. Gillies MT (1980) The role of carbon dioxide in host-finding by mosquitoes (Diptera: Culicidae). Rev Bull Entomol Research 70:525–532CrossRefGoogle Scholar
  16. Grard G et al (2014) Zika virus in Gabon (Central Africa)-2007: A New Threat from Aedes albopictus? PLoS Negl Trop Dis 8:e2681CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hao H, Sun J, Dai J (2012) Preliminary analysis of several attractants and spatial repellents for the mosquito, Aedes albopictus using an olfactometer. J Insect Sci 12:76CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hochedez P, Hausfater P, Jaureguiberry S, Gay F, Datry A, Danis M, Bricaire F, Bossi P (2007) Cases of chikungunya fever imported from the islands of the South West Indian Ocean to Paris, France. Euro Surveil 12:7CrossRefGoogle Scholar
  19. Jones KE, Patel NG, Levy MA, Storygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993CrossRefPubMedGoogle Scholar
  20. Kline DL (1994) Olfactory attractants for mosquito surveillance and control: 1-octen- 3-ol. J Am Mosq Control Assoc 10:280–287PubMedGoogle Scholar
  21. Kline DL, Mann MO (1998) Evaluation of butanone, carbon dioxide, and 1- octen-3-ol as attractants for mosquitoes associated with north central Florida bay and cypress swamps. J Am Mosq Control Assoc 14:289–297PubMedGoogle Scholar
  22. Kline DL, Takken W, Wood JR, Carlson DA (1990) Field studies on the potential of butanone, carbon dioxide, honey extract, 1-octen-3-ol, L-lactic acid and phenols as attractants for mosquitoes. Med Vet Entomol 4:383–391CrossRefPubMedGoogle Scholar
  23. Kline DL, Dame DA, Meisch MV (1991a) Evaluation of 1-octen-3-ol and carbon dioxide as attractants for mosquitoes associated with irrigated rice fields in Arkansas. J Am Mosq Control Assoc 7:165–169PubMedGoogle Scholar
  24. Kline DL, Takken W, Wood JR, Cornell JA (1991b) Interactive effects of 1- octen-3-ol and carbon dioxide on mosquito (Diptera: Culicidae) surveillance and control. J Med Entomol 28:254–258CrossRefPubMedGoogle Scholar
  25. Kraemer MU, Sinka ME, Duda KA et al (2015) The global distribution of the arbovirus vectors Aedes aegypti and Aedes albopictus. elife 4:e08347CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lehane MJ (1991) Biology of Blood-sucking Insects. London, Chapman & Hall. 1rd edn. p 288Google Scholar
  27. Mboera LEG, Takken W (1997) Carbon dioxide chemotropism in mosquitoes (Diptera: Culicidae) and its potential in vector surveillance and management programmes. Rev Med Vet Entomol 85:355–368Google Scholar
  28. Meeraus WH, Armistead JS, Aria JR (2008) Field comparison of novel and gold standard traps for collecting Aedes albopictus in northern Virginia. J Am Mosq Control Assoc 24:344–348CrossRefGoogle Scholar
  29. Morens DM, Folkers GK, Fauci AS (2004) The challenge of emerging and re-emerging infectious diseases. Nature 430:242–249CrossRefPubMedGoogle Scholar
  30. Ngadjui BT, Ayafor JF, Sondengam BL (1989) Prenylated coumarins from the leaves of Clausena anisata. J Nat Prod 52:243–247CrossRefGoogle Scholar
  31. Paupy C, Delatte H, Bagny L et al (2009) Aedes albopictus, arbovirus vector: from the darkness to the light. Microbes Infect Inst Pasteur 11:1177–1185CrossRefGoogle Scholar
  32. Ratsitorahina M, Harisoa J et al (2008) Outbreak of dengue and chikungunya fevers, Toamasina, Madagascar, 2006. Emerg Infect Dis 14:1135–1137CrossRefPubMedPubMedCentralGoogle Scholar
  33. Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L, Vaney MC et al (2006) Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med 3:e263CrossRefPubMedPubMedCentralGoogle Scholar
  34. Shone SM, Ferrao PN, Lesser CR, Glass GE, Norris DE (2003) Evaluation of carbon dioxide- and 1-octen-3-ol-baited centers for disease control Fay-Prince traps to collect Aedes albopictus. J Am Mosq Control Assoc 19:445–447PubMedPubMedCentralGoogle Scholar
  35. Silva IM, Eiras AE, Kline DL, Bernier UR (2005) Laboratory evaluation of mosquito traps baited with a synthetic human odor blend to capture Aedes aegypti. J Am Mosq Control Assoc 21:229–233CrossRefPubMedGoogle Scholar
  36. Silver B (2008) Field sampling methods. Mosquito Ecology. 3rd edn. p 1477Google Scholar
  37. Smallegange RC, Takken W (2010) Host-seeking behavior of mosquitoes: responses to olfactory stimuli in the laboratory. In: Takken W, Knols BGJ (eds) Olfaction in vector-host interactions. Wageningen Academic Publishers, Wageningen, pp 143–180Google Scholar
  38. Stone A (1967) A synoptic catalog of the mosquitoes of the world, Supplement III (Diptera, Culicidae). Proc Ent Soc Wash 69:197–224Google Scholar
  39. Stone A (1970) A synoptic catalog of the mosquitoes of the world, Supplement IV (Diptera, Culicidae). Proc Ent Soc Wash 72:137–171Google Scholar
  40. Suaya JA et al (2009) Cost of dengue cases in eight countries in the Americas and Asia: a prospective study. Am J Trop Med Hyg 80:846–855PubMedGoogle Scholar
  41. Sukumar K, Perich MJ, Boobar LR (1991) Botanical derivatives in mosquito control: a review. J Am Mosq Control Assoc 7:210–237PubMedGoogle Scholar
  42. Takken W, Kline DL (1989) Carbon dioxide and 1-octen-3-ol as mosquito attractants. J Am Mosq Control Assoc 5:311–316PubMedGoogle Scholar
  43. Trost BM (2002) On inventing reactions for atom economy. Acc Chem Res 35:695–705CrossRefPubMedGoogle Scholar
  44. Tunon H, Thorsell W, Mikiver A, Malander I (2006) Arthropod repellency, especially tick (Ixodes ricinus), exerted by extract from Artemisia abrotanum and essential oil from flowers of Dianthus caryophyllum. Fitoterapia 77:257–261CrossRefPubMedGoogle Scholar
  45. Van Loon JJA, Smallegange RC, Kiss GB, Jacobs F, De Rijk M, Mukabana WR, Verhulst NO, Menger DJ, Takken W (2015) Mosquito attraction: crucial role of carbon dioxide in formulation of a five-component blend of human-derived volatiles. J Chem Ecol 41:567–573CrossRefPubMedPubMedCentralGoogle Scholar
  46. Verhulst NO, Mbadi PA, Kiss GB, Mukabana WR, Van Loon JJ, Takken W et al (2011) Improvement of a synthetic lure for Anopheles gambiae using compounds produced by human skin microbiota. Malaria J 8:10–28Google Scholar
  47. Vialle E (2011) Chemical reactivity of polyether ionophores and coumarins: towards effective molecular systems for animal health. PhD Thesis in Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS) Laboratoire de Catalyse, Synthèse et Environnement, Université de Lyon 1, FranceGoogle Scholar
  48. Vialle E, Delaveau J, Lemaire M, Rostaing PS, Andrioletti B (2013) Novel insect repellent coumarin derivatives, syntheses, and methods of use. Patent WO 2013003168 A1Google Scholar
  49. Williamson A (1850) Theory of etherification. Philos Mag 37:350–356Google Scholar
  50. Zohdy S, Derfus KS, Mbolatiana TA, Wright PC, Gillespie TR (2015) Field evaluation of synthetic lure (3-methyl-1-butanol) when compared to non odor-baited control in capturing Anopheles mosquitoes in varying land-use sites in Madagascar. Parasits Vectors 8:145CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tovo Mbolatiana Andrianjafy
    • 1
    • 2
  • Lala Harivelo Ravaomanarivo
    • 1
    • 2
  • Voahangy Vestalys Ramanandraibe
    • 1
  • Maonja Finaritra Rakotondramanga
    • 1
  • Patrick Mavingui
    • 1
    • 3
  • Marc Lemaire
    • 1
    • 4
  1. 1.Laboratory International AssociatesUniversity of Antananarivo-University of Lyon 1AntananarivoMadagascar
  2. 2.Department of EntomologyUniversity of AntananarivoAntananarivoMadagascar
  3. 3.Université de La Réunion, UMR PIMITSainte ClotildeFrance
  4. 4.ICBMS, CNRS, UMR 5246University of Claude Bernard Lyon 1VilleurbanneFrance

Personalised recommendations