Journal of Chemical Ecology

, Volume 44, Issue 3, pp 312–325 | Cite as

Sequestered Alkaloid Defenses in the Dendrobatid Poison Frog Oophaga pumilio Provide Variable Protection from Microbial Pathogens

  • Kyle J. Hovey
  • Emily M. Seiter
  • Erin E. Johnson
  • Ralph A. Saporito
Article

Abstract

Most amphibians produce their own defensive chemicals; however, poison frogs sequester their alkaloid-based defenses from dietary arthropods. Alkaloids function as a defense against predators, and certain types appear to inhibit microbial growth. Alkaloid defenses vary considerably among populations of poison frogs, reflecting geographic differences in availability of dietary arthropods. Consequently, environmentally driven differences in frog defenses may have significant implications regarding their protection against pathogens. While natural alkaloid mixtures in dendrobatid poison frogs have recently been shown to inhibit growth of non-pathogenic microbes, no studies have examined the effectiveness of alkaloids against microbes that infect these frogs. Herein, we examined how alkaloid defenses in the dendrobatid poison frog, Oophaga pumilio, affect growth of the known anuran pathogens Aeromonas hydrophila and Klebsiella pneumoniae. Frogs were collected from five locations throughout Costa Rica that are known to vary in their alkaloid profiles. Alkaloids were isolated from individual skins, and extracts were assayed against both pathogens. Microbe subcultures were inoculated with extracted alkaloids to create dose-response curves. Subsequent spectrophotometry and cell counting assays were used to assess growth inhibition. GC-MS was used to characterize and quantify alkaloids in frog extracts, and our results suggest that variation in alkaloid defenses lead to differences in inhibition of these pathogens. The present study provides the first evidence that alkaloid variation in a dendrobatid poison frog is associated with differences in inhibition of anuran pathogens, and offers further support that alkaloid defenses in poison frogs confer protection against both pathogens and predators.

Keywords

Aeromonas Chemical defense Colony-forming unit Klebsiella Optical density 

Notes

Acknowledgements

This study was supported by an Exploration Fund Grant from The Explorers Club, a Roger Conant Grant In Herpetology from the Society for the Study of Amphibians and Reptiles, a Grant-In-Aid of Research from Sigma Xi, The Scientific Research Society, and John Carroll University. We thank the Organization for Tropical Studies La Selva Biological Research Station, the Canadian Organization for Tropical Education and Rainforest Conservation Caño Palma Biological Station, Emily Khazan, Alex C. Gilman, and Andres Vega for their support in carrying out this research, as well as N. Becza, A. Blanchette, S. Bolton, M. Boyk, R. Drenovsky, M. Gade, M. Russell, N. Spies, M. Viloria, and N. Woodcraft for helpful editorial feedback and/or assistance collecting frogs. All collections of O. pumilio were approved by the Convention on International Trade of Endangered Species (CITES) research and collection permit 2015-CR1420/SJ(#S1487) issued by the Costa Rican government. The John Carroll University Institutional Animal Care and Use Committee (IACUC protocol #1101) approved all methods used in the study.

Supplementary material

10886_2018_930_MOESM1_ESM.pdf (104 kb)
ESM 1 (PDF 103 kb)
10886_2018_930_MOESM2_ESM.pdf (341 kb)
ESM 2 (PDF 341 kb)
10886_2018_930_MOESM3_ESM.pdf (201 kb)
ESM 3 (PDF 201 kb)
10886_2018_930_MOESM4_ESM.pdf (136 kb)
ESM 4 (PDF 136 kb)

References

  1. Andriamaharavo NR, Garraffo HM, Spande TF, Giddings L-A, Vieites DR, Vences M, Saporito RA (2015) Individual and geographic variation of skin alkaloids in three swamp-forest species of Madagascan poison frogs (Mantella). J Chem Ecol 41:837–847PubMedCrossRefGoogle Scholar
  2. Barra D, Simmaco M, Boman HG (1998) Gene-encoded peptide antibiotics and innate immunity. Do “animalcules” have defence budgets? FEBS Lett 430:130–134PubMedCrossRefGoogle Scholar
  3. Becker MH, Harris RN (2010) Cutaneous bacteria of the redback salamander prevent morbidity associated with a lethal disease. PLoS One 5:e10957PubMedPubMedCentralCrossRefGoogle Scholar
  4. Becker MH, Walke JB, Cikanek S, Savage AE, Mattheus N, Santiago CN, Minbiole KPC, Harris RN, Belden LK, Gratwicke B (2015) Composition of symbiotic bacteria predicts survival in Panamanian golden frogs infected with a lethal fungus. Proc R Soc B 282:20142881PubMedPubMedCentralCrossRefGoogle Scholar
  5. Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, Slocombe R, Ragan MA, Hyatt AD, McDonald KR, Hines HB, Lips KR, Marantelli G, Parkes H (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and central America. Proc Natl Acad Sci U S A 95:9031–9036PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bolton SK, Dickerson K, Saporito RA (2017) Variable alkaloid defense in the dendrobatid poison frog (Oophaga pumilio) are perceived as differences in palatability to arthropods. J Chem Ecol 43:273–289PubMedCrossRefGoogle Scholar
  7. Bonansea MI, Vaira M (2007) Geographic variation of the diet of Melanophryniscus rubriventris (Anura: Bufonidae) in northwestern Argentina. J Herpetol 41:231–236CrossRefGoogle Scholar
  8. Bradford DF (1991) Mass mortality and extinction in a high-elevation population of Rana muscosa. J Herpetol 25:174–177CrossRefGoogle Scholar
  9. Brito de Assis A, dos Santos C, Dutra FP, de Oliveira Motta A, Costa FS, Navas CA, Magalhães BS, Barreto CC (2016) Assessing antibacterial potential of components of Phyllomedusa distincta skin and its associated dermal microbiota. J Chem Ecol 42:139–148PubMedCrossRefGoogle Scholar
  10. Brodie ED, Tumbarello MS (1978) The antipredator functions of Dendrobates auratus (Amphibia, Anura, Dendrobatidae) skin secretion in regard to a snake predator (Thamnophis). J Herpetol 12:264–265CrossRefGoogle Scholar
  11. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250PubMedCrossRefGoogle Scholar
  12. Brucker RM, Harris RN, Schwantes CR, Gallaher TN, Flaherty DC, Lam BA, Minbiole KPC (2008) Amphibian chemical defense: antifungal metabolites of the microsymbiont Janthinobacterium lividum on the salamander Plethodon cinereus. J Chem Ecol 34:1422–1429PubMedCrossRefGoogle Scholar
  13. Cardall BL, Brodie ED, Hanifin CT (2004) Secretion and regeneration of tetrodotoxin in the rough-skin newt (Taricha granulosa). Toxicon 44:933–938PubMedCrossRefGoogle Scholar
  14. Carr AH, Amborski RL, Culley DDJ, Amborski GF (1976) Aerobic bacteria in the intestinal tracts of bull-frogs (Rana catesbeiana) maintained at low temperatures. Herpetologica 32:239–244Google Scholar
  15. Chen L, Gao L, Fang W, Golubovic L (2012) How the antimicrobial peptides kill bacteria: computational physics insights. Commun Comput Phys 11:709–725CrossRefGoogle Scholar
  16. Clark VC, Rakotomalala V, Ramilijaona O, Abrell L, Fisher BL (2006) Individual variation in alkaloid content of poison frogs of Madagascar (Mantella; Mantellidae). J Chem Ecol 32:2219–2233PubMedCrossRefGoogle Scholar
  17. Conlon JM (2011a) Structural diversity and species distribution of host-defense peptides in frog skin secretions. Cell Mol Life Sci 68:2303–2315PubMedCrossRefGoogle Scholar
  18. Conlon JM (2011b) The contribution of skin antimicrobial peptides to the system of innate immunity in anurans. Cell Tissue Res 343:201–212PubMedCrossRefGoogle Scholar
  19. Culp CE, Falkinham JOI, Belden LK (2007) Identification of the natural bacterial microflora on the skin of eastern newts, bullfrog tadpoles and redback salamanders. Herpetologica 63:66–71CrossRefGoogle Scholar
  20. Daly JW (1995) The chemistry of poisons in amphibian skin. Proc Natl Acad Sci U S A 92:9–13PubMedPubMedCentralCrossRefGoogle Scholar
  21. Daly JW (2004) Marine toxins and nonmarine toxins: convergence or symbiotic organisms? J Nat Prod 67:1211–1215PubMedCrossRefGoogle Scholar
  22. Daly JW, Garraffo HM (1990) Alkaloids from Australian frogs (Myobatrachidae): Pseudophrynamines and pumiliotoxins. J Nat Prod 5:407–421CrossRefGoogle Scholar
  23. Daly JW, Myers CW, Whittaker N (1987) Further classification of skin alkaloids from neotropical poison frogs (Dendrobatidae), with a general survey of toxic/noxious substances in the Amphibia. Toxicon 25:1023–1095PubMedCrossRefGoogle Scholar
  24. Daly JW, Garraffo HM, Spande TF, Jaramillo C, Rand AS (1994) Dietary source for skin alkaloids of poison frogs (Dendrobatidae)? J Chem Ecol 20:943–955PubMedCrossRefGoogle Scholar
  25. Daly JW, Garraffo HM, Hall GSE, Cover JF (1997) Absence of skin alkaloids in captive-raised Madagascan mantelline frogs (Mantella) and sequestration of dietary alkaloids. Toxicon 35:1131–1135PubMedCrossRefGoogle Scholar
  26. Daly JW, Kaneko T, Wilham JM, Garraffo HM, Spande TF, Espinosa A, Donnelly MA (2002) Bioactive alkaloids of frog skin: combinatorial bioprospecting reveals that pumiliotoxins have an arthropod source. Proc Natl Acad Sci U S A 99:13996–14001PubMedPubMedCentralCrossRefGoogle Scholar
  27. Daly JW, Spande TF, Garraffo HM (2005) Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds. J Nat Prod 68:1556–1575PubMedCrossRefGoogle Scholar
  28. Daly JW, Wilham JM, Spande TF, Garraffo HM, Gil RR, Silva GL, Vaira M (2007) Alkaloids in bufonid toads (Melanophryniscus): temporal and geographic determinants for two Argentinian species. J Chem Ecol 33:871–887.  https://doi.org/10.1007/s10886-007-9261-x PubMedCrossRefGoogle Scholar
  29. Daly JW, Garraffo HM, Spande TF, Giddings L-A, Saporito RA, Vieites DR, Vences M (2008a) Individual and geographic variation of skin alkaloids in three species of Madagascan poison frogs (Mantella). J Chem Ecol 34:252–279PubMedCrossRefGoogle Scholar
  30. Daly JW, Garraffo HM, Spande TF, Yeh HJC, Peltzer PM, Cacivio P, Baldo JD, Faivovich J (2008b) Indolizidine 239Q and Quinolizidine 275I. Major alkaloids in two Argentinian bufonid toads (Melanophryniscus). Toxicon 52:858–870PubMedPubMedCentralCrossRefGoogle Scholar
  31. Daly JW, Ware N, Saporito RA, Spande TF, Garraffo HM (2009) N-methyldecahydroquinolines: an unexpected class of alkaloids from Amazonian poison frogs (Dendrobatidae). J Nat Prod 72:1110–1114PubMedPubMedCentralCrossRefGoogle Scholar
  32. Diamond G, Beckloff N, Weinberg A, Kisich KO (2009) The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 15:2377–2392PubMedPubMedCentralCrossRefGoogle Scholar
  33. Donnelly MA (1989) Reproductive phenology and age structure of Oophaga pumilio in northeastern Costa Rica. J Herpetol 23:362–367CrossRefGoogle Scholar
  34. Edmunds M (1974) Defence in animals. Longman, HarlowGoogle Scholar
  35. Erspamer V (1994) Bioactive secretions of the amphibian integument. In: Heatwole H, Barthalmus G, Heatwole A (eds) Amphibian biology. Surrey Beatty and Sons, Chipping NortonGoogle Scholar
  36. Fitch RW, Spande TF, Garraffo HM, Yeh HJC, Daly JW (2013) Phantasmidine: an epibatidine congener from the Ecuadorian poison frog Epipedobates anthonyi. J Nat Prod 73:331–337CrossRefGoogle Scholar
  37. Fritz G, Rand AS, Claude W (1981) The aposematically colored frog, Dendrobates pumilio, is distasteful to the large, predatory ant, Paraponera clavata. Biotropica 13:158–159CrossRefGoogle Scholar
  38. Garraffo HM, Andriamaharavo NR, Vaira M, Quiroga MF, Heit C, Spande TF (2012) Alkaloids from single skins of the Argentinian toad Melanophryniscus rubriventris (Anura, Bufonidae): an unexpected variability in alkaloid profiles and a profusion of new structures. Spring 1:51CrossRefGoogle Scholar
  39. Grant T, Colombo P, Verrastro L, Saporito RA (2012) The occurrence of defensive alkaloids in non-integumentary tissues of the Brazilian red-belly toad Melanophryniscus simplex (Bufonidae). Chemoecology 22:169–178CrossRefGoogle Scholar
  40. Gray HM, Kaiser H, Green DM (2010) Does alkaloid sequestration protect the green poison frog, Dendrobates auratus, from predator attacks? Salamandra 46:235–238Google Scholar
  41. Green SL, Bouley DM, Tolwani RJ, Waggie KS, Lifland BD, Otto GM, Ferrell JE (1999) Identification and management of an outbreak of Flavobacterium meningosepticum infection in a colony of south African clawed frogs (Xenopus laevis). J Am Vet Med Assoc 214:1833–1838PubMedGoogle Scholar
  42. Green DE, Converse KA, Schrader AK (2002) Epizootiology of sixty four amphibian morbidity and mortality events in the USA, 1996-2001. Ann N Y Acad Sci 969:323–339PubMedCrossRefGoogle Scholar
  43. Hantak MM, Grant T, Reinsch S, Mcginnity D, Loring M, Toyooka N, Saporito RA (2013) Dietary alkaloid sequestration in a poison frog: an experimental test of alkaloid uptake in Melanophryniscus stelzneri (Bufonidae). J Chem Ecol 39:1400–1406PubMedCrossRefGoogle Scholar
  44. Hantak MM, Paluh DJ, Saporito RA (2016) Bufadienolide and alkaloid-based chemical defences in two different species of neotropical anurans are equally effective against the same arthropod predators. J Trop Ecol 32:165–169CrossRefGoogle Scholar
  45. Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CR, Flaherty DC, Lam BA, Woodhams DC, Briggs CJ, Vredenburg VT, Minbiole KPC (2009) Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J 3:818–824PubMedCrossRefGoogle Scholar
  46. Hill WA, Newman SJ, Craig L, Carter C, Czarra J, Brown JP (2010) Diagnosis of Aeromonas hydrophila, Mycobacterium species, and Batrachochytrium dendrobatidis in an African clawed frog (Xenopus laevis). J Am Assoc Lab Anim Sci 49:215–220PubMedPubMedCentralGoogle Scholar
  47. Hovey KJ, Viloria MO, Saporito RA (2016) Oophaga pumilio (strawberry poison frog). Predator-prey interactions. Herpetol Rev 47:113–114Google Scholar
  48. Hubbard GB (1981) Aeromonas hydrophila infection in Xenopus laevis. Lab Anim Sci 31:297–300PubMedGoogle Scholar
  49. Jeckel AM, Grant T, Saporito RA (2015a) Sequestered and synthesized chemical defenses in the poison frog Melanophryniscus moreirae. J Chem Ecol 41:505–512PubMedCrossRefGoogle Scholar
  50. Jeckel AM, Saporito RA, Grant T (2015b) The relationship between poison frog chemical defenses and age, body size, and sex. Front Zool 12:27PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jones TH, Adams RMM, Spande TF, Garraffo HM, Kaneko T, Schultz TR (2012) Histrionicotoxin alkaloids finally detected in an ant. J Nat Prod 75:1930–1936PubMedCrossRefGoogle Scholar
  52. Lauer A., Simon MA, Banning JL, Lam BA, Harris RN (2008) Diversity of cutaneous bacteria with antifungal activity isolated from female four-toed salamanders. The ISME J 2:145–157Google Scholar
  53. Lauer A, Simon MA, Banning JL, André E, Duncan K, Harris RN (2007) Common cutaneous bacteria from the eastern red-backed salamander can inhibit pathogenic fungi. Copeia 2007:630–640CrossRefGoogle Scholar
  54. Loudon AH, Woodhams DC, Parfrey LW, Archer H, Knight R, McKenzie VJ, Harris RN (2014) Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus). ISME J 8:830–840PubMedCrossRefGoogle Scholar
  55. Macfoy C, Danosus D, Sandit R, Jones TH, Garraffo HM, Spande TF, Daly JW (2005) Alkaloids of anuran skin: antimicrobial function? Zeitschrift für Naturforsch C 60:932–937CrossRefGoogle Scholar
  56. Mangoni ML, Miele R, Renda TG, Barra D, Simmaco M (2001) The synthesis of antimicrobial peptides in the skin of Rana esculenta is stimulated by microorganisms. FASEB J 15:1431–1432PubMedCrossRefGoogle Scholar
  57. McClean S, Robinson RC, Shaw C, Smyth WF (2002) Characterisation and determination of indole alkaloids in frog-skin secretions by electrospray ionisation ion trap mass spectrometry. Rapid Commun Mass Spectrom 16:346–354PubMedCrossRefGoogle Scholar
  58. Mebs D (2001) Toxicity in animals. Trends in evolution? Toxicon 39:87–96PubMedCrossRefGoogle Scholar
  59. Miele R, Ponti D, Boman HG, Barra D, Simmaco M (1998) Molecular cloning of a bombinin gene from Bombina orientalis: detection of NF-κB and NF-IL6 binding sites in its promoter. FEBS Lett 431:23–28PubMedCrossRefGoogle Scholar
  60. Miller D, Rajeev S, Brookins M, Cook J, Whittington L, Baldwin C (2008) Concurrent infection with ranavirus, Batrachochytrium dendrobatidis, and Aeromonas in a captive anuran colony. J Zoo Wildl Med 39:445–449PubMedCrossRefGoogle Scholar
  61. Mina AE, Ponti AK, Woodcraft NL, Johnson EE, Saporito RA (2015) Variation in alkaloid-based microbial defenses of the dendrobatid poison frog Oophaga pumilio. Chemoecology 25:169–178CrossRefGoogle Scholar
  62. Murray EM, Bolton SK, Berg T, Saporito RA (2016) Arthropod predation in a dendrobatid poison frog: does frog life stage matter? Zoology 119:119–126CrossRefGoogle Scholar
  63. Myers CW, Daly JW (1976) Preliminary evaluation of toxins and vocalizations in taxonomic and evolutionary studies of poison-dart frogs (Dendrobatidae). Bull Am Mus Nat Hist 157:173–262Google Scholar
  64. Myers JM, Ramsey JP, Blackman AL, Nichols AE, Minbiole KPC, Harris RN (2012) Synergistic inhibition of the lethal fungal pathogen Batrachochytrium dendrobatidis: the combined effect of symbiotic bacterial metabolites and antimicrobial peptides of the frog Rana muscosa. J Chem Ecol 38:958–965PubMedCrossRefGoogle Scholar
  65. Nicolas P, Mor A (1995) Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu Rev Microbiol:277–304Google Scholar
  66. Nyman S (1986) Mass mortality in larval Rana sylvatica attributable to the bacterium, Aeromonas hydrophila. J Herpetol 20:196–201CrossRefGoogle Scholar
  67. Park ST, Collingwood AM, St-Hilaire S, Sheridan PP (2014) Inhibition of Batrachochytrium dendrobatidis caused by bacteria isolated from the skin of boreal toads, Anaxyrus (Bufo) boreas boreas, from grand Teton National Park, Wyoming, USA. Microbiol Insights 7:1–8PubMedPubMedCentralCrossRefGoogle Scholar
  68. Pask JD, Cary TL, Rollins-Smith LA (2013) Skin peptides protect juvenile leopard frogs (Rana pipiens) against chytridiomycosis. J Exp Biol 216:2908–2916PubMedCrossRefGoogle Scholar
  69. Pearson MD, Hirono I, Aoki T, Miranda R, Inglis V (2000) Virulence properties of motile aeromonads isolated from farmed frogs Rana tigerina and R. rugulosa. Dis Aquat Org 40:185–193PubMedCrossRefGoogle Scholar
  70. Pessier AP (2002) An overview of amphibian skin disease. Semin Avian Exot Pet Med 11:162–174CrossRefGoogle Scholar
  71. Quiroga MF, Bonansea MI, Vaira M (2011) Population diet variation and individual specialization in the poison toad, Melanophryniscus rubriventris (Vellard, 1947). Amphibia-Reptilia 32:261–265CrossRefGoogle Scholar
  72. Roelants K, Fry BG, Ye L, Stijlemans B, Brys L, Kok P, Clynen E, Schoofs L, Cornelis P, Bossuyt F (2013) Origin and functional diversification of an amphibian defense peptide arsenal. PLoS Genet 9:e1003662PubMedPubMedCentralCrossRefGoogle Scholar
  73. Rollins-Smith LA (2005) Antimicrobial peptide defenses in amphibian skin. Integr Comp Biol 45:137–142PubMedCrossRefGoogle Scholar
  74. Rollins-Smith LA, Carey C, Longcore JE, Doersam JK, Boutte A, Bruzgal JE, Conlon JM (2002a) Activity of antimicrobial skin peptides from ranid frogs against Batrachochytrium dendrobatidis, the chytrid fungus associated with global amphibian declines. Dev Comp Immunol 26:471–479PubMedCrossRefGoogle Scholar
  75. Rollins-Smith LA, Doersam JK, Longcore JE, Taylor SK, Shamblin JC, Carey C, Zasloff MA (2002b) Antimicrobial peptide defenses against pathogens associated with global amphibian declines. Dev Comp Immunol 26:63–72PubMedCrossRefGoogle Scholar
  76. Rosenfeld Y, Barra D, Simmaco M, Shai Y, Mangoni ML (2006) A synergism between temporins toward gram-negative bacteria overcomes resistance imposed by the lipopolysaccharide protective layer. J Biol Chem 281:28565–28574PubMedCrossRefGoogle Scholar
  77. Santos JC, Tarvin RD, O’Connell LA (2016) A review of chemical defense in poison frogs (Dendrobatidae): ecology, pharmacokinetics, and autoresistance. In: Schulte BE, Goodwin TE, Ferkin MH (eds) Chemical signals in vertebrates 13. Springer International Publishing, New York City, pp 305–337CrossRefGoogle Scholar
  78. Saporito RA, Donnelly MA, Garraffo HM, Spande TF, Daly JW (2006) Geographic and seasonal variation in alkaloid-based chemical defenses of Dendrobates pumilio from Bocas del Toro, Panama. J Chem Ecol 32:795–814PubMedCrossRefGoogle Scholar
  79. Saporito RA, Donnelly MA, Jain P, Garraffo HM, Spande TF, Daly JW (2007a) Spatial and temporal patterns of alkaloid variation in the poison frog Oophaga pumilio in Costa Rica and Panama over 30 years. Toxicon 50:757–778PubMedCrossRefGoogle Scholar
  80. Saporito RA, Donnelly MA, Norton RA, Garraffo HM, Spande TF, Daly JW (2007b) Oribatid mites as a major dietary source for alkaloids in poison frogs. Proc Natl Acad Sci U S A 104:8885–8890PubMedPubMedCentralCrossRefGoogle Scholar
  81. Saporito RA, Spande TF, Garraffo HM, Donnelly MA (2009) Arthropod alkaloids in poison frogs: a review of the “dietary hypothesis”. Heterocycles 79:277–297CrossRefGoogle Scholar
  82. Saporito RA, Donnelly MA, Madden AA, Garraffo HM, Spande TF (2010a) Sex-related differences in alkaloid chemical defenses of the dendrobatid frog Oophaga pumilio from Cayo Nancy, Bocas del Toro, Panama. J Nat Prod 73:317–321PubMedPubMedCentralCrossRefGoogle Scholar
  83. Saporito RA, Isola M, Maccachero VC, Condon K, Donnelly MA (2010b) Ontogenetic scaling of poison glands in a dendrobatid poison frog. J Zool 282:238–245CrossRefGoogle Scholar
  84. Saporito RA, Norton RA, Andriamaharavo NR, Garraffo HM, Spande TF (2011) Alkaloids in the mite Scheloribates laevigatus: further alkaloids common to oribatid mites and poison frogs. J Chem Ecol 37:213–218PubMedCrossRefGoogle Scholar
  85. Saporito RA, Donnelly MA, Spande TF, Garraffo HM (2012) A review of chemical ecology in poison frogs. Chemoecology 22:159–168CrossRefGoogle Scholar
  86. Saporito RA, Norton RA, Garraffo HM, Spande TF (2015) Taxonomic distribution of defensive alkaloids in Nearctic oribatid mites (Acari, Oribatida). Exp Appl Acarol 67:317–333PubMedCrossRefGoogle Scholar
  87. Schadich E, Cole ALJ (2009) Inhibition of frog antimicrobial peptides by extracellular products of the bacterial pathogen Aeromonas hydrophila. Lett Appl Microbiol 49:384–387PubMedCrossRefGoogle Scholar
  88. Schadich E, Cole ALJ (2010) Pathogenicity of Aeromonas hydrophila, Klebsiella pneumoniae, and Proteus mirabilis to brown tree frogs (Litoria ewingii). Comp Med 60:114–117PubMedPubMedCentralGoogle Scholar
  89. Sherman CK, Morton ML (1993) Population declines of Yosemite toads in the eastern sierra Nevada of California. J Herpetol 27:186–198CrossRefGoogle Scholar
  90. Simmaco M, Mangoni ML, Boman A, Barra D, Boman HG (1998a) Experimental infections of Rana esculenta with Aeromonas hydrophila: a molecular mechanism for the control of the normal flora. Scand J Immunol 48:357–363PubMedCrossRefGoogle Scholar
  91. Simmaco M, Mignogna G, Barra D (1998b) Antimicrobial peptides from amphibian skin: what do they tell us? Biopolym - Pept Sci Sect 47:435–450CrossRefGoogle Scholar
  92. Smith BP, Tyler MJ, Kaneko T, Garraffo HM, Spande TF, Daly JW (2002) Evidence for biosynthesis of pseudophrynamine alkaloids by an Australian microhylid frog (Pseudophryne) and for sequestration of dietary pumiliotoxins. J Nat Prod 65:439–447PubMedCrossRefGoogle Scholar
  93. Spande TF, Jain P, Garraffo HM, Pannell LK, Yeh HJC, Daly JW, Fukumoto S, Imamura K, Tokuyama T, Torres JA, Snelling RR, Jones TH (1999) Occurrence and significance of decahydroquinolines from dendrobatid poison frogs and a myrmicine ant: use of 1H and 13C NMR in their conformational analysis. J Nat Prod 62:5–21PubMedCrossRefGoogle Scholar
  94. Stynoski JL, Torres-Mendoza Y, Sasa-Marin M, Saporito RA (2014) Evidence of maternal provisioning of alkaloid-based chemical defenses in the strawberry poison frog Oophaga pumilio. Ecology 95:587–593PubMedCrossRefGoogle Scholar
  95. Szelistowski WA (1985) Unpalatability of the poison arrow frog Dendrobates pumilio to the ctenid spider Cupiennius coccineus. Biotropica 17:345–346CrossRefGoogle Scholar
  96. Taylor SK, Green DE, Wright KM, Whitaker BR (2001) Bacterial diseases. In: Wright KM, Whitaker BR (eds) Amphibian medicine and captive husbandry. Krieger Publishing, Malabar, pp 159–179Google Scholar
  97. Tennessen JA, Woodhams DC, Chaurand P, Reinert LK, Billheimer D, Shyr Y, Caprioli RM, Blouin MS, Rollins-Smith LA (2009) Variations in the expressed antimicrobial peptide repertoire of northern leopard frog (Rana pipiens) populations suggest intraspecies differences in resistance to pathogens. Dev Comp Immunol 33:1247–1257PubMedPubMedCentralCrossRefGoogle Scholar
  98. Toledo RC, Jared C (1995) Cutaneous granular glands and amphibian venoms. Comp Biochem Physiol Part A Mol Integr Physiol 111A:1–29Google Scholar
  99. Walke JB, Becker MH, Loftus SC, House LL, Teotonio TL, Minbiole KPC, Belden LK (2015) Community structure and function of amphibian skin microbes: an experiment with bullfrogs exposed to a chytrid fungus. PLoS One 10:e0139848PubMedPubMedCentralCrossRefGoogle Scholar
  100. Weldon PJ, Kramer M, Gordon S, Spande TF, Daly JW (2006) A common pumiliotoxin from poison frogs exhibits enantioselective toxicity against mosquitoes. Proc Natl Acad Sci U S A 103:17818–17821PubMedPubMedCentralCrossRefGoogle Scholar
  101. Weldon PJ, Cardoza YJ, Vander Meer RK, Hoffmann WC, Daly JW, Spande TF (2013) Contact toxicities of anuran skin alkaloids against the fire ant (Solenopsis invicta). Naturwissenschaften 100:185–192PubMedCrossRefGoogle Scholar
  102. Whitfield SM, Geerdes E, Chacon I, Ballestero Rodriguez E, Jimenez RR, Donnelly MA, Kerby JL (2013) Infection and co-infection by the amphibian chytrid fungus and ranavirus in wild costa Rican frogs. Dis Aquat Org 104:173–178PubMedCrossRefGoogle Scholar
  103. Woodhams DC, Ardipradja K, Alford RA, Marantelli G, Reinert LK, Rollins-Smith LA (2007a) Resistance to chytridiomycosis varies among amphibian species and is correlated with skin peptide defenses. Anim Conserv 10:409–417CrossRefGoogle Scholar
  104. Woodhams DC, Rollins-Smith LA, Alford RA, Simon MA, Harris RN (2007b) Innate immune defenses of amphibian skin: antimicrobial peptides and more. Anim Conserv 10:425–428CrossRefGoogle Scholar
  105. Woodhams DC, Vredenburg VT, Simon MA, Billheimer D, Shakhtour B, Shyr Y, Briggs CJ, Rollins-Smith LA, Harris RN (2007c) Symbiotic bacteria contribute to innate immune defenses of the threatened mountain yellow-legged frog, Rana muscosa. Biol Conserv 138:390–398CrossRefGoogle Scholar
  106. Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81:1475–1485PubMedPubMedCentralCrossRefGoogle Scholar
  107. Yotsu-Yamashita M, Kim YH, Dudley SC, Choudhary G, Pfahnl A, Oshima Y, Daly JW (2004) The structure of zetekitoxin AB, a saxitoxin analog from the Panamanian golden frog Atelopus zeteki: a potent sodium-channel blocker. Proc Natl Acad Sci U S A 101:4346–4351PubMedPubMedCentralCrossRefGoogle Scholar
  108. Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A 84:5449–5453PubMedPubMedCentralCrossRefGoogle Scholar
  109. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kyle J. Hovey
    • 1
  • Emily M. Seiter
    • 1
  • Erin E. Johnson
    • 1
  • Ralph A. Saporito
    • 1
  1. 1.Department of BiologyJohn Carroll UniversityUniversity HeightsUSA

Personalised recommendations