Journal of Chemical Ecology

, Volume 44, Issue 2, pp 137–146 | Cite as

Conspecific and Heterogeneric Lacewings Respond to (Z)-4-Tridecene Identified from Chrysopa formosa (Neuroptera: Chrysopidae)

  • Sándor KoczorEmail author
  • Ferenc Szentkirályi
  • József Vuts
  • John C. Caulfield
  • David M. Withall
  • John A. Pickett
  • Michael A. Birkett
  • Miklós Tóth


Green lacewings (Chrysopidae) are predators of soft-bodied pest insects and are among the most important biological control agents in crop protection. Chrysopa spp. are of special importance since, unlike most green lacewing species, adults are also predatory. The current study was undertaken in search of Chrysopa formosa compounds with semiochemical activity. Using coupled gas chromatography-electroantennography (GC-EAG), head and thorax extracts of C. formosa elicited EAG responses to a compound subsequently identified by coupled GC/mass spectrometry, microchemistry, chemical synthesis and GC peak enhancement as (Z)-4-tridecene. In field experiments, this compound decreased attraction of adult C. formosa to (1R,4aS,7S,7aR)-nepetalactol and that of Chrysoperla carnea species-complex to a ternary floral lure, with the inhibitory effect found to be dose-dependent. Our results suggest that (Z)-4-tridecene may serve as a general warning signal among multiple green lacewing species. Perspectives for potential practical applications are discussed.


Chrysopa formosa Chrysoperla carnea species-complex (Z)-4-tridecene (1R,4aS,7S,7aR)-nepetalactol Synthetic ternary floral bait Repellency Biological control Predator 



The current research was partially supported by the National Research Development and Innovation Office (NKFIH) grant PD115938, the SMARTCROP project of the Research Council of Norway and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council (BBSRC) of the United Kingdom.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest

Supplementary material

10886_2017_920_MOESM1_ESM.pdf (84 kb)
ESM 1 (PDF 84 kb)


  1. Aldrich J, Zhang QH (2016) Chemical ecology of Neuroptera. Annu Rev Entomol 61:197–218CrossRefPubMedGoogle Scholar
  2. Aldrich JR, Le TC, Zhang QH, Torres J, Winterton SL, Han B, Miller GL, Chauhan KR (2009) Prothoracic gland semiochemicals of green lacewings. J Chem Ecol 35:1181–1187CrossRefPubMedGoogle Scholar
  3. Aldrich JR, Chauhan K, Zhang QH (2016) Pharmacophagy in green lacewings (Neuroptera: Chrysopidae: Chrysopa spp.)? PeerJ 4:e1564CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aspöck H, Aspöck U, Hölzel H (1980) Die Neuropteren Europas. Eine zusammenfassende darstellung der systematik, ökologie und chorologie der Neuropteroidea (Megaloptera, Raphidioptera, Planipennia) Europas. 2 volumes. Goecke & Evers, KrefeldGoogle Scholar
  5. Aspöck H, Hölzel H, Aspöck U (2001) Familie Chrysopidae. In: Aspöck H, Hölzel H and Aspöck U (eds) Kommentierter Katalog der Neuropterida (Insecta: Raphidioptera, Megaloptera, Neuroptera) der Westpaläarktis. Denisia 02, Biologiecentrum des Oberösterreichischen Landesmuseums, Linz, Austria, pp 69-124Google Scholar
  6. Atlihan R, Kaydan B, Özgökçe MS (2004) Feeding activity and life history characteristics of the generalist predator, Chrysoperla carnea (Neuroptera: Chrysopidae) at different prey densities. J Pest Sci 77:17–21CrossRefGoogle Scholar
  7. Attygalle AB (1998) Microchemical techniques, In: Millar JG and Haynes KF (eds) Methods in Chemical Ecology, Volume 1, Chemical Methods. Kluwer, Boston, pp 207–294Google Scholar
  8. Blum MS, Wallace JB, Fales HM (1973) Skatole and tridecene: identification and possible role in a chrysopid secretion. Insect Biochem 3:353–357CrossRefGoogle Scholar
  9. Bozsik A (1992) Natural adult food of some important Chrysopa species (Planipennia: Chrysopidae). Acta Phytopathol Entomol Hung 27:141–146Google Scholar
  10. Brooks SJ, Barnard PC (1990) The green lacewings of the world: a generic review (Neuroptera: Chrysopidae). Bull Br Mus nat Hist Entomol 59:117–286Google Scholar
  11. Canard M (2001) Natural food and feeding habits of lacewings. In: McEwen PK, New TR, Whittington A (eds) Lacewings in the crop environment. Cambridge University Press, Cambridge, pp 116–128CrossRefGoogle Scholar
  12. Duelli P (2001) Lacewings in field crops. In: McEwen PK, New TR, Whittington A (eds) Lacewings in the crop environment. Cambridge University Press, Cambridge, pp 158–171CrossRefGoogle Scholar
  13. Flint HM, Salter SS, Walters S (1979) Caryophyllene: an attractant for the green lacewing. Environ Entomol 8:1123–1125CrossRefGoogle Scholar
  14. Fréchette B, Coderre D, Lucas É (2006) Chrysoperla rufilabris (Neuroptera: Chrysopidae) females do not avoid ovipositing in the presence of conspecific eggs. Biol Control 37:354–358CrossRefGoogle Scholar
  15. Hári K, Pénzes B, Jósvai J, Holb I, Szarukán I, Szólláth I, Vitányi I, Koczor S, Ladányi M, Tóth M (2011) Performance of traps baited with pear ester-based lures vs. pheromone baited ones for monitoring codling moth Cydia pomonella L. in Hungary. Acta Phytopathol Entomol Hung 46:225–234CrossRefGoogle Scholar
  16. Henry CS, Brooks SJ, Thierry D, Duelli P, Johnson JB (2001) The common green lacewing (Chrysoperla carnea s. lat.) and the sibling species problem. In: McEwen PK, New TR, Whittington A (eds) Lacewings in the crop environment. Cambridge University Press, Cambridge, pp 29–42CrossRefGoogle Scholar
  17. Hollander M, Wolfe DA, Chicken E (2014) Nonparametric statistical methods. Wiley, HobokenGoogle Scholar
  18. Hooper AM, Donato B, Woodcock CM, Park JH, Paul RL, Boo KS, Hardie J, Pickett JA (2002) Characterization of (1R,4S,4aR,7S,7aR)-dihydronepetalactol as a semiochemical for lacewings, including Chrysopa spp. and Peyerimhoffina gracilis. J Chem Ecol 28:849–864CrossRefPubMedGoogle Scholar
  19. Jaastad G, Hatleli L, Knudsen GK, Tóth M (2010) Volatiles initiate egg laying in common green lacewings. IOBC/wprs Bull 54:77–82Google Scholar
  20. Jósvai JK, Koczor S, Szabóky C, Ladányi M, Tóth M (2016) Microlepidoptera caught in traps baited with lures containing pear ester and acetic acid in Hungary. Acta Phytopathol Entomol Hung 51:255–266CrossRefGoogle Scholar
  21. Koczor S, Szentkirályi F, Birkett MA, Pickett JA, Voigt E, Tóth M (2010) Attraction of Chrysoperla carnea Complex and Chrysopa spp. lacewings (Neuroptera: Chrysopidae) to aphid sex pheromone components and a synthetic blend of floral compounds in Hungary. Pest Manag Sci 66:1374–1379CrossRefPubMedGoogle Scholar
  22. Koczor S, Knudsen GK, Hatleli L, Szentkirályi F, Tóth M (2015a) Manipulation of oviposition and overwintering site choice of common green lacewings with synthetic lure (Neuroptera: Chrysopidae). J Appl Ent 139:201–206CrossRefGoogle Scholar
  23. Koczor S, Szentkirályi F, Pickett JA, Birkett MA, Tóth M (2015b) Aphid sex pheromone compounds interfere with attraction of common green lacewings to floral bait. J Chem Ecol 41:550–556CrossRefPubMedGoogle Scholar
  24. Koczor S, Szentkirályi F, Fekete Z, Tóth M (2017) Smells good, feels good: oviposition of Chrysoperla carnea-Complex lacewings can be concentrated locally in the field with a combination of appropriate olfactory and tactile stimuli. J Pest Sci 90:311–317CrossRefGoogle Scholar
  25. Landolt PJ, Tóth M, Meagher RL, Szarukán I (2013) Interaction of acetic acid and phenylacetaldehyde as attractants for trapping pest species of moths (Lepidoptera: Noctuidae). Pest Manag Sci 69:245–249CrossRefPubMedGoogle Scholar
  26. Pappas ML, Broufas GD, Koveos DS (2011) Chrysopid predators and their role in biological control. J Entomol 8:301–326CrossRefGoogle Scholar
  27. Pickett JA, Khan ZR (2016) Plant volatile-mediated signalling and its application in agriculture: successes and challenges. New Phytol 212:856–870CrossRefPubMedGoogle Scholar
  28. Pickett JA, Allemann RK, Birkett MA (2013) The semiochemistry of aphids. Nat Prod Rep 30:1277–1283CrossRefPubMedGoogle Scholar
  29. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  30. Ruzicka Z (1994) Oviposition-deterring pheromone in Chrysopa oculata (Neuroptera: Chrysopidae). Eur J Entomol 91:361–370Google Scholar
  31. Ruzicka Z (1996) Oviposition-deterring pheromone in Chrysopidae (Neuroptera) intra- and interspecific effects. Eur J Entomol 93:161–166Google Scholar
  32. Ruzicka Z (1998) Further evidence of oviposition-deterring allomone in chrysopids (Neuroptera: Chrysopidae). Eur J Entomol 95:35–39Google Scholar
  33. Ruzicka Z (2010) Detection of oviposition-deterring larval tracks in Chrysopa oculata and Chrysopa perla (Neuroptera: Chrysopidae). Eur J Entomol 107:65–72CrossRefGoogle Scholar
  34. Sprent P, Smeeton NC (2007) Applied nonparametric statistical methods. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  35. Szentkirályi F (2001) Lacewings in fruit and nut crops. In: McEwen PK, New TR, Whittington A (eds) Lacewings in the crop environment. Cambridge University Press, Cambridge, pp 172–238CrossRefGoogle Scholar
  36. Tóth M, Bozsik A, Szentkirályi F, Letardi A, Tabilio MR, Verdinelli M, Zandigiacomo P, Jekisa J, Szarukán I (2006) Phenylacetaldehyde: a chemical attractant for common green lacewings (Chrysoperla carnea s.l., Neuroptera: Chrysopidae). Eur J Entomol 103:267–271CrossRefGoogle Scholar
  37. Tóth M, Szentkirályi F, Vuts J, Letardi A, Tabilio MR, Jaastad G, Knudsen GK (2009) Optimization of a phenylacetaldehyde-based attractant for common green lacewings (Chrysoperla carnea s.l., Neuroptera: Chrysopidae). J Chem Ecol 35:449–458CrossRefPubMedGoogle Scholar
  38. Vuts J, Furlan L, Bálintné Csonka É, Woodcock CM, Caulfield JC, Mayon P, Pickett JA, Birkett MA, Tóth M (2014) Development of a female attractant for the click beetle pest Agriotes brevis. Pest Manag Sci 70:610–614CrossRefPubMedGoogle Scholar
  39. Zhang QH, Chauhan KR, Erbe EF, Vellore AR, Aldrich JR (2004) Semiochemistry of the goldeneyed lacewing Chrysopa oculata: attraction of males to a male-produced pheromone. J Chem Ecol 30:1849–1870CrossRefPubMedGoogle Scholar
  40. Zhang QH, Schneidmiller RG, Hoover DR, Young K, Welshons DO, Margaryan A, Aldrich JR, Chauhan KR (2006) Male-produced pheromone of the green lacewing, Chrysopa nigricornis. J Chem Ecol 32:2163–2176CrossRefPubMedGoogle Scholar
  41. Zhu J, Cossé AA, Obrycki JJ, Boo KS, Baker TC (1999) Olfactory reactions of the twelve-spotted lady-beetle, Coleomegilla maculata and the green lacewing, Chrysoperla carnea to semiochemicals released from their prey and host plant: electroantennogram and behavioral responses. J Chem Ecol 25:1163–1177CrossRefGoogle Scholar
  42. Zhu JW, Unelius RC, Park KC, Ochieng SA, Obrycki JJ, Baker TC (2000) Identification of (Z)-4-tridecene from defensive secretion of green lacewing, Chrysoperla carnea. J Chem Ecol 26:2421–2434CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sándor Koczor
    • 1
    Email author
  • Ferenc Szentkirályi
    • 1
  • József Vuts
    • 2
  • John C. Caulfield
    • 2
  • David M. Withall
    • 2
  • John A. Pickett
    • 2
  • Michael A. Birkett
    • 2
  • Miklós Tóth
    • 1
  1. 1.Plant Protection Institute, Centre for Agricultural Research, HASBudapestHungary
  2. 2.Department of Biointeractions and Crop Protection, Rothamsted ResearchHertfordshireUK

Personalised recommendations