Skip to main content
Log in

Structural Transformation Detection Contributes to Screening of Behaviorally Active Compounds: Dynamic Binding Process Analysis of DhelOBP21 from Dastarcus helophoroides

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

In light of reverse chemical ecology, the fluorescence competitive binding assays of functional odorant binding proteins (OBPs) is a recent advanced approach for screening behaviorally active compounds of insects. Previous research on Dastareus helophoroides identified a minus-C OBP, DhelOBP21, which preferably binds to several ligands. In this study, only (+)-β-pinene proved attractive to unmated adult beetles. To obtain a more in-depth explanation of the lack of behavioral activity of other ligands we selected compounds with high (camphor) and low (β-caryophyllene) binding affinities. The structural transformation of OBPs was investigated using well-established approaches for studying binding processes, such as fluorescent quenching assays, circular dichroism, and molecular dynamics. The dynamic binding process revealed that the flexibility of DhelOBP21 seems conducive to binding specific ligands, as opposed to broad substrate binding. The compound (+)-β-pinene and DhelOBP21 formed a stable complex through a secondary structural transformation of DhelOBP21, in which its amino-terminus transformed from random coil to an α-helix to cover the binding pocket. On the other hand, camphor could not efficiently induce a stable structural transformation, and its high binding affinities were due to strong hydrogen-bonding, compromising the structure of the protein. The other compound, β-caryophyllene, only collided with DhelOBP21 and could not be positioned in the binding pocket. Studying structural transformation of these proteins through examining the dynamic binding process rather than using approaches that just measure binding affinities such as fluorescence competitive binding assays can provide a more efficient and reliable approach for screening behaviorally active compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DhelOBP21:

Dastarcus helophoroides odorant-binding protein 21

GOBP:

General odorant binding protein

PBP:

Pheromone binding protein

CD:

Circular dichroism

RNAi:

RNA interference

qRT-PCR:

quantitative real-time PCR

References

  • Biessmann H et al (2010) The Anopheles gambiae odorant binding protein 1 (AgamOBP1) mediates indole recognition in the antennae of female mosquitoes. PLoS One e9471:5

    Google Scholar 

  • Brito NF, Moreira MF, Melo AC (2016) A look inside odorant-binding proteins in insect chemoreception. J Insect Physiol 95:51–65

    Article  CAS  PubMed  Google Scholar 

  • Campanacci V et al (2001) Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone-binding proteins with a fluorescence binding assay. J Biol Chem 276:20078–20084

    Article  CAS  PubMed  Google Scholar 

  • Case DA et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang H, Liu Y, Yang T, Pelosi P, Dong S, Wang G (2015) Pheromone binding proteins enhance the sensitivity of olfactory receptors to sex pheromones in Chilo suppressalis. Sci Rep 5:13093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damberger FF, Ishida Y, Leal WS, Wüthrich K (2007) Structural basis of ligand binding and release in insect pheromone-binding proteins: NMR structure of Antheraea polyphemus PBP1 at pH 4.5. J Mol Biol 373:811

    Article  CAS  PubMed  Google Scholar 

  • Davrazou F, Dong E, Murphy EJ, Johnson HT, Jones DNM (2011) New insights into the mechanism of odorant detection by the malaria-transmitting mosquito Anopheles gambiae. J Biol Chem 286:34175–34183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drakou CE, Tsitsanou KE, Potamitis C, Fessas D, Zervou M, Zographos SE (2017) The crystal structure of the AgamOBP1•Icaridin complex reveals alternative binding modes and stereo-selective repellent recognition. Cell Mol Life Sci 74:319–338

    Article  CAS  PubMed  Google Scholar 

  • Geron C, Rasmussen R, Arnts RR, Guenther A (2000) A review and synthesis of monoterpene speciation from forests in the United States. Atmos Environ 34:1761–1781

    Article  CAS  Google Scholar 

  • Golebiowski J, Antonczak S, Cabrol-Bass D (2006) Molecular dynamics studies of odorant binding protein free of ligand and complexed to pyrazine and octenol. J Mol Struct THEOCHEM 763:165–174

    Article  CAS  Google Scholar 

  • Gomezdiaz C, Reina JH, Cambillau C, Benton R (2013) Ligands for pheromone-sensing neurons are not conformationally activated odorant binding proteins. PLoS Biol 11:e1001546

    Article  CAS  Google Scholar 

  • He X, Tzotzos G, Woodcock C, Pickett JA, Hooper T, Field LM, Zhou JJ (2010) Binding of the general odorant binding protein of Bombyx mori BmorGOBP2 to the moth sex pheromone components. J Chem Ecol 36:1293

    Article  CAS  PubMed  Google Scholar 

  • Jin JY, Li ZQ, Zhang YN, Liu NY, Dong SL (2014) Different roles suggested by sex-biased expression and pheromone binding affinity among three pheromone binding proteins in the pink rice borer, Sesamia inferens (Walker) (Lepidoptera: Noctuidae). J Insect Physiol 66:71–79

    Article  CAS  PubMed  Google Scholar 

  • Kamala JPD, Kempraj V, Aurade RM, Roy TK, Shivashankara KS, Verghese A (2014) Computational reverse chemical ecology: virtual screening and predicting behaviorally active semiochemicals for Bactrocera dorsalis. BMC Genomics 15:209

    Article  Google Scholar 

  • Krieger J, Von NE, Mameli M, Pelosi P, Breer H (1996) Binding proteins from the antennae of Bombyx mori. Insect Biochem Mol Biol 26:297

    Article  CAS  PubMed  Google Scholar 

  • Kruse SZR, Smith DP, Dnm J (2003) Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH from Drosophila melanogaster. Nat Struct Biol 10:694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakowicz JR, Masters BR (2008) Principles of fluorescence spectroscopy, third edition 13:029901

  • Laughlin JD, Ha TS, Jones DN, Smith DP (2008) Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell 133:1255–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lescop E, Briand L, Pernollet JC, Guittet E (2009) Structural basis of the broad specificity of a general odorant-binding protein from honeybee. Biochemist 48:2431–2441

    Article  CAS  Google Scholar 

  • Li DZ, Yu GQ, Yi SC, Zhang Y, Kong DX, Wang MQ (2015a) Structure-based analysis of the ligand-binding mechanism for DhelOBP21, a C-minus odorant binding protein, from Dastarcus helophoroides (Fairmaire; Coleoptera: Bothrideridae). Int J Biol Sci 11:1281–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Wu F, Zhao L, Tan J, Jiang H, Hu F (2015b) Neonicotinoid insecticide interact with honeybee odorant-binding protein: implication for olfactory dysfunction. Int J Biol Macromol 81:624–630

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zhang L, Ni C, Shang H, Zhuang S, Li J (2013) Molecular recognition of floral volatile with two olfactory related proteins in the Eastern honeybee (Apis cerana). Int J Biol Macromol 56:114

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Manoharan M, Fuchs PF, Sowdhamini R, Offmann B (2013) Insights on pH-dependent conformational changes of mosquito odorant binding proteins by molecular dynamics simulations. J Biomol Struct Dyn 32:1742

    Article  PubMed  Google Scholar 

  • Mao Y, Xu X, Xu W, Ishida Y, Leal WS, Ames JB, Clardy J (2010) Crystal and solution structures of an odorant-binding protein from the southern house mosquito complexed with an oviposition pheromone. Proc Natl Acad Sci USA 107:19102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanty S, Zubkov S, Gronenborn AM (2004) The solution NMR structure of Antheraea polyphemus PBP provides new insight into pheromone recognition by pheromone-binding proteins. J Mol Biol 337:443

    Article  CAS  PubMed  Google Scholar 

  • Molecular Operating Environment (MOE)2012.08 (2016) Chemical Computing Group Inc.: 1010 Sherbooke St. West S Montreal, QC, Canada, H3A 2R7

  • Murphy EJ, Booth JC, Davrazou F, Port AM, Jones DN (2013) Interactions of Anopheles gambiae odorant-binding proteins with a human-derived repellent: implications for the mode of action of n,n-diethyl-3-methylbenzamide (DEET). J Biol Chem 288:4475

    Article  CAS  PubMed  Google Scholar 

  • Pelosi P, Zhou J-J, Ban LP, Calvello M (2006) Soluble proteins in insect chemical communication. Cell Mol Life Sci 63:1658–1676

    Article  CAS  PubMed  Google Scholar 

  • Qiao H et al (2011) Cooperative interactions between odorant-binding proteins of Anopheles gambiae. Cell Mol Life Sci 68:1799–1813

    Article  CAS  PubMed  Google Scholar 

  • Qiao H, Tuccori E, He X, Gazzano A, Field L, Zhou JJ, Pelosi P (2009) Discrimination of alarm pheromone (E)-beta-farnesene by aphid odorant-binding proteins. Insect Biochem Mol Biol 39:414–419

    Article  CAS  PubMed  Google Scholar 

  • Ren L-l (2014) Electrophysiological and behavioral responses of Monochamus alternatus and parasitoid Dastarcus helophoroides to semiochemicals of several tree species. Beijing Forestry University

  • Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemist 20:3096–3102

    Article  CAS  Google Scholar 

  • Sánchezgracia A, Vieira FG, Rozas J (2009) Molecular evolution of the major chemosensory gene families in insects. Heredity 103:208–216

    Article  Google Scholar 

  • Sandler BH, Nikonova L, Leal WS, Clardy J (2000) Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem Biol 7:143–151

    Article  CAS  PubMed  Google Scholar 

  • Schulz S (2004) The chemistry of pheromones and other semiochemicals I 239

  • Schwaighofer A et al (2014) Honey bee odorant-binding protein 14: effects on thermal stability upon odorant binding revealed by FT-IR spectroscopy and CD measurements. Eur Biophys J 43:105–112

    Article  CAS  PubMed  Google Scholar 

  • Simmerling C, Miller JL, Kollman PA (1998) Combined locally enhanced sampling and particle mesh ewald as a strategy to locate the experimental structure of a nonhelical nucleic acid. J Am Chem Soc 120:7149–7155

    Article  CAS  Google Scholar 

  • Spinelli S, Lagarde A, Iovinella I, Legrand P, Tegoni M, Pelosi P, Cambillau C (2012) Crystal structure of Apis mellifera OBP14, a C-minus odorant-binding protein, and its complexes with odorant molecules. Insect Biochem Mol Biol 42:41

    Article  CAS  PubMed  Google Scholar 

  • Stengl M, Zufall F, Hatt H, Hildebrand JG (1992) Olfactory receptor neurons from antennae of developing male Manduca sexta respond to components of the species-specific sex pheromone in vitro. J Neurosci 12:2523–2531

    CAS  PubMed  Google Scholar 

  • Thode AB, Kruse SW, Nix JC, Jones DN (2008) The role of multiple hydrogen-bonding groups in specific alcohol binding sites in proteins: insights from structural studies of LUSH. J Mol Biol 376:1360–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsitsanou KE et al (2012) Anopheles gambiae odorant binding protein crystal complex with the synthetic repellent DEET: implications for structure-based design of novel mosquito repellents. Cell Mol Life Sci 69:283–297

    Article  CAS  PubMed  Google Scholar 

  • Venthur H, Mutis A, Zhou J, Quiroz A (2015) Ligand binding and homology modelling of insect odorant-binding proteins. Physiol Entomol 39:183–198

    Article  Google Scholar 

  • Wogulis M, Morgan T, Ishida Y, Leal WS, Wilson DK (2005) The crystal structure of an odorant binding protein from Anopheles gambiae: evidence for a common ligand release mechanism. Biochem Biophys Res Comm 339:157–164

    Article  PubMed  Google Scholar 

  • Xu W, Cornel AJ, Leal WS (2010) Odorant-binding proteins of the malaria mosquito Anopheles funestus sensu stricto. PLoS One 5:e15403

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin J, Feng H, Sun H, Xi J, Cao Y, Li K (2012) Functional analysis of general odorant binding protein 2 from the meadow moth, Loxostege sticticalis. (Lepidoptera: Pyralidae). PLoS One 7:e33589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu G-Q (unpublished) Deciphering the volatile binding, activation and discrimination mechanism of a Minus-C OBP, DhelOBP21

  • Zheng ZC, Li DZ, Zhou A, Yi SC, Liu H, Wang MQ (2016) Predicted structure of a Minus-C OBP from Batrocera horsfieldi (Hope) suggests an intermediate structure in evolution of OBPs. Sci Rep 6:33981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou JJ, Robertson G, He X, Dufour S, Hooper AM, Pickett JA, Keep NH, Field LM (2009) Characterisation of Bombyx mori odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components. J Mol Biol 389:529–545

    Article  CAS  PubMed  Google Scholar 

  • Zhuang X, Wang Q, Wang B, Zhong T, Cao Y, Li K, Yin J (2014) Prediction of the key binding site of odorant-binding protein of Holotrichia oblita Faldermann (Coleoptera: Scarabaeida). Insect Mol Biol 23:381

    CAS  PubMed  Google Scholar 

  • Ziemba BP, Murphy EJ, Edlin HT, Jones DN (2013) A novel mechanism of ligand binding and release in the odorant binding protein 20 from the malaria mosquito Anopheles gambiae. Protein Sci 22:11–21

    Article  CAS  PubMed  Google Scholar 

  • Zwiebel LJ, Takken W (2004) Olfactory regulation of mosquito-host interactions. Insect Biochem Mol Biol 34:645–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported and funded by the National Key Research and Development Program (2017YFD0600101), the National Natural Science Foundation of China (31230015) and Fundamental Research Funds for the Central Universities (2662015PY139).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to De-Xin Kong or Man-Qun Wang.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Electronic supplementary material

ESM 1

(DOCX 227 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, RN., Li, DZ., Yu, G. et al. Structural Transformation Detection Contributes to Screening of Behaviorally Active Compounds: Dynamic Binding Process Analysis of DhelOBP21 from Dastarcus helophoroides . J Chem Ecol 43, 1033–1045 (2017). https://doi.org/10.1007/s10886-017-0897-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-017-0897-x

Keywords

Navigation