Skip to main content

Sublethal Effects of Neonicotinoid Insecticide on Calling Behavior and Pheromone Production of Tortricid Moths

Abstract

In moths, sexual behavior combines female sex pheromone production and calling behavior. The normal functioning of these periodic events requires an intact nervous system. Neurotoxic insecticide residues in the agroecosystem could impact the normal functioning of pheromone communication through alteration of the nervous system. In this study we assess whether sublethal concentrations of the neonicotinoid insecticide thiacloprid, that competitively modulates nicotinic acetylcholine receptors at the dendrite, affect pheromone production and calling behavior in adults of three economically important tortricid moth pests; Cydia pomonella (L.), Grapholita molesta (Busck), and Lobesia botrana (Denis & Schiffermüller). Thiacloprid significantly reduced the amount of calling in C. pomonella females at LC0.001 (a lethal concentration that kills only 1 in 105 individuals), and altered its calling period at LC1, and in both cases the effect was dose-dependent. In the other two species the effect was similar but started at higher LCs, and the effect was relatively small in L. botrana. Pheromone production was altered only in C. pomonella, with a reduction of the major compound, codlemone, and one minor component, starting at LC10. Since sex pheromones and neonicotinoids are used together in the management of these three species, our results could have implications regarding the interaction between these two pest control methods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. (MAPAMA) Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente (2017) Registro de Productos Fitosanitarios http://www.mapama.gob.es/es/agricultura/temas/sanidad-vegetal/productos-fitosanitarios/registro/menu.asp. Accessed 5 Apr 2017

  2. Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdisc Toxicol 2(1):1–12

    Article  Google Scholar 

  3. Baker TC, Cardé RT (1979) Endogenous and exogenous factors affecting periodicities of female calling and male sex pheromone response in Grapholita molesta (Busck). J Insect Physiol 25(12):943–950

    Article  Google Scholar 

  4. Barrett BA, Keesey IW, Akbulut S, Terrell-Stamps W (2013) Antennal responses of Cydia pomonella (L.) exposed to surfaces treated with methoxyfenozide. J Appl Entomol 137(7):499–508

    CAS  Article  Google Scholar 

  5. Byers JA (2006) Pheromone component patterns of moth evolution revealed by computer analysis of the Pherolist. J Anim Ecol 75(2):399–407

    Article  Google Scholar 

  6. Cardé RT (2016) Moth navigation along pheromone plumes. In: Allison JD, Cardé RT (eds) Pheromone communication in moths: evolution, behavior and application, 1st edn. University of California Press, Oakland, pp 173–189

    Google Scholar 

  7. Casida JE (2009) Pest toxicology: the primary mechanisms of pesticide action. Chem Res Toxicol 22(4):609–619

    CAS  Article  PubMed  Google Scholar 

  8. Castrovillo PJ, Cardé RT (1979) Environmental regulation of female calling and male pheromone response periodicities in the codling moth (Laspeyresia pomonella). J Insect Physiol 25(8):659–667

    Article  Google Scholar 

  9. Clark DC, Haynes KF (1992a) Sublethal effects of cypermethrin on chemical communication, courtship, and oviposition in the cabbage looper (Lepidoptera: Noctuidae). J Econ Entomol 85:1771–1778

    CAS  Article  Google Scholar 

  10. Clark DC, Haynes KF (1992b) Sublethal effects of chlordimeform on chemical communication and other reproductive behaviors in the female cabbage looper moth (Lepidoptera: Noctuidae). Arch Insect Biochem 19:105–117

    CAS  Article  Google Scholar 

  11. Dallaire R, Labrecque A, Marcotte M, Bauce É, Delisle J (2004) The sublethal effects of tebufenozide on the precopulatory and copulatory activities of Choristoneura fumiferana and C. rosaceana. Entomol Exp Appl 112(3):169–181

    CAS  Article  Google Scholar 

  12. Damos P, Colomar LAE, Ioriatti C (2015) Integrated fruit production and pest management in Europe: the apple case study and how far we are from the original concept? Insects 6(3):626–657

    Article  PubMed  PubMed Central  Google Scholar 

  13. Delisle J, Vincent C (2002) Modified pheromone communication associated with insecticidal resistance in the obliquebanded leafroller, Choristoneura rosaceana (Lepidoptera: Tortricidae). Chemoecology 12(1):47–51

    CAS  Article  Google Scholar 

  14. Delisle J, Picimbon JF, Simard J (2000) Regulation of pheromone inhibition in mated females of Choristoneura fumiferana and C. rosaceana. J Insect Physiol 46(6):913–921

    CAS  Article  PubMed  Google Scholar 

  15. Delpuech JM, Froment B, Fouillet P, Pompanon F, Janillon S, Boulétreau M (1998) Inhibition of sex pheromone communications of Trichogramma brassicae (hymenoptera) by the insecticide chlorpyrifos. Environ Toxicol Chem 17(6):1107–1113

    CAS  Article  Google Scholar 

  16. Foster SP, Roelofs WL (1994) Regulation of pheromone production in virgin and mated females of two tortricid moths. Arch Insect Biochem 25(4):271–285

    CAS  Article  Google Scholar 

  17. Gemeno C, Haynes KF (2000) Periodical and age-related variation in chemical communication system of black cutworm moth, Agrotis ipsilon. J Chem Ecol 26(2):329–342

    CAS  Article  Google Scholar 

  18. Groot AT (2014) Circadian rhythms of sexual activities in moths: a review. Front Ecol Evol 2:43

    Article  Google Scholar 

  19. Harari AR, Zahavi T, Thiéry D (2011) Fitness cost of pheromone production in signaling female moths. Evolution 65(6):1572–1582

    Article  PubMed  Google Scholar 

  20. Harari AR, Zahavi T, Steinitz H (2015) Female detection of the synthetic sex pheromone contributes to the efficacy of mating disruption of the European grapevine moth, Lobesia botrana. Pest Manag Sci 71:316–322

    CAS  Article  PubMed  Google Scholar 

  21. Haynes KF (1988) Sublethal effects of neurotoxic insecticides on insect behavior. Annu Rev Entomol 33(1):149–168

    CAS  Article  PubMed  Google Scholar 

  22. Haynes KF, Baker TC (1985) Sublethal effects of permethrin on the chemical communication system of the pink bollworm moth, Pectinophora gossypiella. Arch Insect Biochem 2(3):283–293

    CAS  Article  Google Scholar 

  23. Holdcraft R, Rodriguez-Saona C, Stelinski LL (2016) Pheromone autodetection: evidence and implications. Insects 7(2):17

    Article  PubMed Central  Google Scholar 

  24. Ioriatti C, Anfora G, Tasin M, De Cristofaro A, Witzgall P, Lucchi A (2011) Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). J Econ Entomol 104(4):1125–1137

    CAS  Article  PubMed  Google Scholar 

  25. Ivaldi-Sender C (1974) Techniques simples pour elevage permanent de la tordeuse orientale, Grapholita molesta (Lep., Tortricidae), sur milieu artificiel. Ann Zoolog Ecol Anim 6:337–343

    Google Scholar 

  26. Jurenka R, Rafaeli A (2011) Regulatory role of PBAN in sex pheromone biosynthesis of heliothine moths. Front Endocrinol 2:46

    Article  Google Scholar 

  27. Kawazu K, Tatsuki S (2002) Diel rhythms of calling behavior and temporal change in pheromone production of the rice leaffolder moth, Cnaphalocrocis medinalis (Lepidoptera: Crambidae). Appl Entomol Zool 37(1):219–224

    CAS  Article  Google Scholar 

  28. Kirk H, Dorn S, Mazzi D (2013) Worldwide population genetic structure of the oriental fruit moth (Grapholita molesta), a globally invasive pest. BMC Ecol 13(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  29. Knight AL, Flexner L (2007) Disruption of mating in codling moth (Lepidoptera: Tortricidae) by chlorantranilipole, an Anthranilic diamide insecticide. Pest Manag Sci 63(2):180–189

    CAS  Article  PubMed  Google Scholar 

  30. Knight AL, Weiss M, Weissling T (1994) Diurnal patterns of adult activity of four orchard pests (Lepidoptera: Tortricidae) measured by timing trap and actograph. J Agric Entomol 11(2):125–136

    Google Scholar 

  31. Knight AL, Barros-Parada W, Bosch D, Escudero-Colomar LA, Fuentes-Contreras E, Hernández-Sánchez J, Yung C, Kim Y, Kovanci OB, Levi A, Lo P, Molinari F, Valls J, Gemeno C (2015) Similar worldwide patterns in the sex pheromone signal and response in the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae). B Entomol Res 105(1):23–31

    CAS  Article  Google Scholar 

  32. Krohn J (2001) Behaviour of thiacloprid in the environment. Pflanzenschutz Nachrichten-Bayer-English Edition 54:281–290

    CAS  Google Scholar 

  33. Linn CE, Roelofs WL (1984) Sublethal effects of neuroactive compounds on pheromone response thresholds in male oriental fruit moths. Arch Insect Biochem 1(4):331–344

    CAS  Article  Google Scholar 

  34. Mazo-Cancino D, Malo EA, Cruz-López L, Rojas JC (2004) Diel periodicity and influence of age and mating on female sex pheromone titre in Estigmene acrea (Lep., Arctiidae). J Appl Entomol 128(6):459–463

    Article  Google Scholar 

  35. Mazor M, Dunkelblum E (2005) Circadian rhythms of sexual behavior and pheromone titers of two closely related moth species Autographa gamma and Cornutiplusia circumflexa. J Chem Ecol 31:2153–2168

    CAS  Article  PubMed  Google Scholar 

  36. McNeil JN (1991) Behavioral ecology of pheromone-mediated communication in moths and its importance in the use of pheromone traps. Annu Rev Entomol 36(1):407–430

    Article  Google Scholar 

  37. Ming QL, Yan YH, Wang CZ (2007) Mechanisms of premating isolation between Helicoverpa armigera (Hübner) and Helicoverpa assulta (Guenée) (Lepidoptera: Noctuidae). J Insect Physiol 53(2):170–178

    CAS  Article  PubMed  Google Scholar 

  38. Navarro-Roldán MA, Avilla J, Bosch D, Valls J, Gemeno C (2017) Comparative effect of three neurotoxic insecticides with different modes of action on adult males and females of three tortricid moth pests. J Econ Entomol. https://doi.org/10.1093/jee/tox113

  39. Quan LF, Qiu GS, Zhang HJ, Sun LN, Li YY, Yan WT (2016) Sublethal concentration of beta-cypermethrin influences fecundity and mating behavior of Carposina sasakii (Lepidoptera: Carposinidae) adults. J Econ Entomol 109(5):2196–2204

    Article  PubMed  Google Scholar 

  40. R Core Team (2016) R: a language and environment for statistical computing http://www.Rproject.org/. Accessed 27 July 2016

  41. Rabhi KK, Deisig N, Demondion E, Le Corre J, Robert G, Tricoire-Leignel H, Lucas P, Gadenne C, Anton S (2016) Low doses of a neonicotinoid insecticide modify pheromone response thresholds of central but not peripheral olfactory neurons in a pest insect. Proc R Soc B 283:20152987

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rafaeli A (2009) Pheromone biosynthesis activating neuropeptide (PBAN): regulatory role and mode of action. Gen Comp Endocr 162(1):69–78

    CAS  Article  PubMed  Google Scholar 

  43. Raina AK (1993) Neuroendocrine control of sex pheromone biosynthesis in Lepidoptera. Annu Rev Entomol 38(1):329–349

    CAS  Article  PubMed  Google Scholar 

  44. Regier JC, Brown JW, Mitter C, Baixeras J, Cho S, Cummings MP, Zwick A (2012) A molecular phylogeny for the leaf-roller moths (Lepidoptera: Tortricidae) and its implications for classification and life history evolution. PLoS One 7(4):e35574

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Reinke MD, Barrett BA (2007) Sublethal exposure to methoxyfenozide-treated surfaces reduces the attractiveness and responsiveness in adult oriental fruit moth (Lepidoptera: Tortricidae). J Econ Entomol 100(1):72–78

    Article  PubMed  Google Scholar 

  46. Roelofs WL, Brown RL (1982) Pheromones and evolutionary relationships of Tortricidae. Annu Rev Ecol Syst 13:395–422

    CAS  Article  Google Scholar 

  47. Roelofs WL, Rooney AP (2003) Molecular genetics and evolution of pheromone biosynthesis in Lepidoptera. Proc Natl Acad Sci U S A 100(16):9179–9184

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Sans A, Morán M, Riba M, Guerrero A, Roig J, Gemeno C (2017) Plant volatiles challenge inhibition by structural analogs of the sex pheromone in Lobesia botrana (Lepidoptera: Tortricidae). Eur J Entomol 113(1):579–586

    Google Scholar 

  49. Shen LZ, Chen PZ, Xu ZH, Deng JY, Harris MK, Wanna R, Wang FM, Zhou GX, Yao ZL (2013) Effect of larvae treated with mixed biopesticide Bacillus thuringiensis-Abamectin on sex pheromone communication system in cotton bollworm, Helicoverpa armigera. PLoS One 8(7):e68756

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Smadja C, Butlin RK (2009) On the scent of speciation: the chemosensory system and its role in premating isolation. Heredity 102(1):77–97

    CAS  Article  PubMed  Google Scholar 

  51. Stelinski LL, Il’Ichev AL, Gut LJ (2006) Antennal and behavioural responses of virgin and mated oriental fruit moth (Lepidoptera: Tortricidae) females to their sex pheromone. Ann Entomol Soc Am 99(5):898–904

    CAS  Article  Google Scholar 

  52. Stelinski L, Holdcraft R, Rodriguez-Saona C (2014) Female moth calling and flight behavior are altered hours following pheromone autodetection: possible implications for practical management with mating disruption. Insects 5(2):459–473

    Article  PubMed  PubMed Central  Google Scholar 

  53. Suckling DM, Baker G, Salehi L, Woods B (2016) Is the combination of insecticide and mating disruption synergistic or additive in lightbrown apple moth, Epiphyas postvittana? PLoS One 11(8):e0160710

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tricoire-Leignel H, Thany SH, Gadenne C, Anton S (2012) Pest insect olfaction in an insecticide-contaminated environment: info-disruption or hormesis effect. Front Physiol 3:1–6

    Article  Google Scholar 

  55. Trimble RM, El-Sayed AM, Pree DJ (2004) Impact of sub-lethal residues of azinphos-methyl on the pheromone-communication systems of insecticide-susceptible and insecticide-resistant obliquebanded leafrollers Choristoneura rosaceana (Lepidoptera: Tortricidae). Pest Manag Sci 60(7):660–668

    CAS  Article  PubMed  Google Scholar 

  56. Vanin S, Bhutani S, Montelli S, Menegazzi P, Green EW, Pegoraro M, Sandrelli F, Costa R, Kyriacou CP (2012) Unexpected features of Drosophila circadian behavioural rhythms under natural conditions. Nature 484(7394):371–375

    CAS  Article  PubMed  Google Scholar 

  57. Webster RP, Cardé RT (1982) Relationships among pheromone titre, calling and age in the omnivorous leafroller moth (Platynota stultana). J Insect Physiol 28(11):925–933

    CAS  Article  Google Scholar 

  58. Wei HY, Du JW (2004) Sublethal effects of larval treatment with Deltamethrin on moth sex pheromone communication system of the Asian corn borer, Ostrinia furnacalis. Pestic Biochem Phys 80(1):12–20

    CAS  Article  Google Scholar 

  59. Wei H, Huang Y, Du J (2004) Sex pheromones and reproductive behavior of Spodoptera litura (Fabricius) moths reared from larvae treated with four insecticides. J Chem Ecol 30(7):1457–1466

    CAS  Article  PubMed  Google Scholar 

  60. Weissling TJ, Knight AL (1996) Oviposition and calling behavior of codling moth (Lepidoptera: Tortricidae) in the presence of codlemone. Ann Entomol Soc Am 89(1):142–147

    Article  Google Scholar 

  61. Wise JC, Coombs AB, Vandervoort C, Gut LJ, Hoffmann EJ, Whalon ME (2006) Use of residue profile analysis to identify modes of insecticide activity contributing to control of plum curculio in apples. J Econ Entomol 99(6):2055–2064

    CAS  Article  PubMed  Google Scholar 

  62. Witzgall P, Stelinski L, Gut L, Thomson D (2008) Codling moth management and chemical ecology. Annu Rev Entomol 53:503–522

    CAS  Article  PubMed  Google Scholar 

  63. Witzgall P, Kirsch P, Cork A (2010) Sex pheromones and their impact on pest management. J Chem Ecol 36(1):80–100

    CAS  Article  PubMed  Google Scholar 

  64. Yang ZH, Du JW (2003) Effects of sublethal deltamethrin on the chemical communication system and PBAN activity of Asian corn borer, Ostrinia furnacalis (Güenee). J Chem Ecol 29(7):1611–1619

    CAS  Article  PubMed  Google Scholar 

  65. Zhou H, Du J, Huang Y (2005) Effects of sublethal doses of malathion on responses to sex pheromones by male Asian corn borer moths, Ostrinia furnacalis (Güenee). J Chem Ecol 31(7):1645–1656

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

MAN-R was supported by a Ph.D. fellowship from the University of Lleida. This study was supported by research Grant AGL2013-49164-C2-1 MINECO, Spain.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Navarro-Roldán.

Electronic supplementary material

Figure S1

(DOCX 661 kb)

Figure S2

(DOCX 91 kb)

Figure S3

(DOCX 152 kb)

Figure S4

(DOCX 91.5 kb)

Figure S5

(DOCX 78.3 kb)

Figure S6

(DOCX 73.2 kb)

Table S1

(DOCX 22.2 kb)

Table S2

(DOCX 19.4 kb)

Table S3

(DOCX 26.5 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Navarro-Roldán, M.A., Gemeno, C. Sublethal Effects of Neonicotinoid Insecticide on Calling Behavior and Pheromone Production of Tortricid Moths. J Chem Ecol 43, 881–890 (2017). https://doi.org/10.1007/s10886-017-0883-3

Download citation

Keywords

  • Sublethal
  • Thiacloprid
  • Calling behavior
  • Pheromone
  • Communication
  • Tortricidae
  • Cydia pomonella
  • Grapholita molesta
  • Lobesia botrana