Skip to main content
Log in

A Generalist Herbivore Copes with Specialized Plant Defence: the Effects of Induction and Feeding by Helicoverpa armigera (Lepidoptera: Noctuidae) Larvae on Intact Arabidopsis thaliana (Brassicales) Plants

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Plants of the Brassicaceae are defended from feeding by generalist insects by constitutively-expressed and herbivory-induced glucosinolates (GS). We induced Arabidopsis plants 1, 16 and 24 h prior to allowing neonate larvae of the generalist Helicoverpa armigera to feed on whole plants for 72 h. These plants were subsequently retested with another group of neonates for a further 72 h. We used wild-type A. thaliana Col-0, and mutant lines lacking indolic GS, aliphatic GS or all GS. We hypothesized that larvae would not grow well on defended plants (WT) compared to those lacking GS, and would not grow well if plants had been primed or fed on for longer, due to the expected induced GS. There was survivorship on all lines suggesting H. armigera is a suitable generalist for these experiments. Larvae performed less well on wild-type and no indolic lines than on no aliphatic and no GS lines. Larvae distributed feeding damage extensively in all lines, more so on wild type and no-indolic lines. Contrary to expectations, larvae grew better on plants that had been induced for 1 to 16 h than on un-induced plants suggesting they moved to and selected less toxic plant parts within a heterogeneously defended plant. Performance declined on all lines if plants had been induced for 24 h, or had been fed upon for a further 72 h. However, contrary to expectation, individual and total GS did not increase after these two treatments. This suggests that Arabidopsis plants induce additional (not GS) defenses after longer induction periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Badenes-Perez FR, Badenes-Perez FR, Reichelt M, Gershenzon J, Heckel DG (2013) Interaction of glucosinolate content of Arabidopsis thaliana mutant lines and feeding and oviposition by generalist and specialist lepidopterans. Phytochemistry 86:36–43

    Article  CAS  PubMed  Google Scholar 

  • Baldwin IT (1998) Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc Natl Acad Sci U S a 95:8113–8118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471–481. doi:10.1016/S0031-9422(02)00549-6

    Article  CAS  PubMed  Google Scholar 

  • Browse J, Howe GA (2008) New weapons and a rapid response against insect attack. Plant Physiol 146:832–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burow M, Losansky A, Muller R, Plock A, Kliebenstein DJ, Wittstock U (2009) The genetic basis of constitutive and herbivore-induced ESP-independent nitrile formation in Arabidopsis. Plant Physiol 149:561–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celorio-Mancera MP, Heckel DG, Vogel H (2012) Transcriptional analysis of physiological pathways in a generalist herbivore: responses to different host plants and plant structures by the cotton bollworm, Helicoverpa armigera. Entomol Exp Appl 144:123–133. doi:10.1111/j.1570-7458.2012.01249.x

    Article  Google Scholar 

  • Chen YH, Gols R, Benrey B (2015) Crop domestication and its impact on naturally selected trophic interactions. Annu Rev Entomol 60:35–58. doi:10.1146/annurev-ento-010814-020601

    Article  CAS  PubMed  Google Scholar 

  • Cunningham JP, Zalucki MP (2014) Understanding Heliothine (Lepidoptera: Heliothinae) pests: what is a host plant? J Econ Entomol 107:881–896

    Article  PubMed  Google Scholar 

  • Graser G, Oldham NJ, Brown PD, Temp U, Gershenzon J (2001) The biosynthesis of benzoic acid glucosinolate esters in Arabidopsis thaliana. Phytochemistry 57:23–32. doi:10.1016/S0031-9422(00)00501-X

    Article  CAS  PubMed  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu rev Plant Biol 57:303–333. doi:10.1146/annurev.arplant.57.032905.105228

    Article  CAS  PubMed  Google Scholar 

  • Hopkins RJ, van Dam NM, van Loon JJ (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83

    Article  CAS  PubMed  Google Scholar 

  • Jeschke V, Gershenzon J, Vassão DG (2016) A mode of action of glucosinolate-derived isothiocyanates: detoxification depletes glutathione and cysteine levels with ramifications on protein metabolism in Spodoptera littoralis. Insect Biochem Mol Biol 71:37–48. doi:10.1016/j.ibmb.2016.02.002

    Article  CAS  PubMed  Google Scholar 

  • Johnson ML, Zalucki MP (2007) Feeding and foraging behaviour of a generalist caterpillar: are third instars just bigger versions of firsts? Bull Entomol res 97:81–88. doi:10.1017/S0007485307004750

    Article  PubMed  Google Scholar 

  • Johnson ML, Schenk PM, Cribb BW, Moore C, Perkins L, Zalucki MP (2011) Is the effect of priming plants, and a functional JAR1, negligible on the foraging behaviour and development of a generalist lepidopteran, Helicoverpa armigera? Entom Exp Appl 141:78–87

    Article  CAS  Google Scholar 

  • Kawakishi S, Kaneko T (1987) Interaction of proteins with allyl isothiocyanate. J Agric Food Chem 35:85–88. doi:10.1021/jf00073a020

    Article  CAS  Google Scholar 

  • Kliebenstein DJ (2004) Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ 27:675–684. doi:10.1111/j.1365-3040.2004.01180.x

    Article  CAS  Google Scholar 

  • Kliebenstein D, Pedersen D, Barker B, Mitchell-Olds T (2002) Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana. Genetics 161:325–332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848+

  • Li X, Schuler MA, Berenbaum MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52:231–253. doi:10.1146/annurev.ento.51.110104.151104

    Article  PubMed  Google Scholar 

  • Lortzing T, Steppuhn A (2016) Jasmonate signalling in plants shapes plant–insect interaction ecology. Curr Opin Insect Sci 14:32–39. doi:10.1016/j.cois.2016.01.002

    Article  PubMed  Google Scholar 

  • Mironidis GK, Savopoulou-Soultani M (2008) Development, survivorship and reproduction of Helicovpera armigera (Lepidoptera: Noctuidae) under constant and alternating temperatures. Environ Entomol 37:16–28

    Article  CAS  PubMed  Google Scholar 

  • Müller C, Riederer M (2005) Plant surface properties in chemical ecology. J Chem Ecol 31:2621–2651. doi:10.1007/s10886-005-7617-7

    Article  PubMed  Google Scholar 

  • Müller R, de Vos M, Sun JY, Sønderby IE, Halkier BA, Wittstock U, Jander G (2010) Differential effects of indole and aliphatic glucosinolates on lepidopteran herbivores. J Chem Ecol 36:905–913. doi:10.1007/s10886-010-9825-z

    Article  PubMed  Google Scholar 

  • Musser RO, Hum-Musser SM, Lee HK, Des Rochers BL, Williams SA, Vogel H (2012) Caterpillar labial saliva alters tomato plant gene expression. J Chem Ecol 38:1387–1401. doi:10.1007/s10886-012-0198-3

    Article  CAS  PubMed  Google Scholar 

  • Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Tree 15:278–285

    CAS  PubMed  Google Scholar 

  • Pawar CS (1998) Helicoverpa armigera - a national problem which needs a national policy and commitment for its management. Pestology 22:51–59

    Google Scholar 

  • Perkins LE, Cribb BW, Brewer PB, Hanan J, Grant M, de Torres M, Zalucki MP (2013) Generalist insects behave in a jasmonate-dependent manner on their host plants, leaving induced areas quickly and staying longer on distant parts. Proc R Soc B Biol Sci 280:20122646. doi:10.1098/rspb.2012.2646

    Article  Google Scholar 

  • Poelman EH, Galiart RJFH, Raaijmakers CE, Van Loon JJA, Van Dam NM (2008) Performance of specialist and generalist herbivores feeding on cabbage cultivars is not explained by glucosinolate profiles. Entomol Exp Appl 127:218–228. doi:10.1111/j.1570-7458.2008.00700.x

    Article  Google Scholar 

  • Ratzka A, Vogel H, Kliebenstein DJ, Mitchell-Olds T, Kroymann J (2002) Disarming the mustard oil bomb. Proc Natl Acad Sci U S a 99:11223–11228. doi:10.1073/pnas.172112899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichelt M, Brown PD, Schneider B, Oldham NJ, Stauber E, Tokuhisa J, Kliebenstein DJ, Mitchell-Olds T, Gershenzon J (2002) Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry 59:663–671. doi:10.1016/S0031-9422(02)00014-6

    Article  CAS  PubMed  Google Scholar 

  • Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson GF, Zalucki MP, Paine TD (2015) Larval host choice of the monarch butterfly (Danaus plexippus L.) on four native California desert milkweed species. J Insect Behav 28:582–592. doi:10.1007/s10905-015-9524-2

    Article  Google Scholar 

  • Rodriguez-Saona C, Thaler JS (2005) The jasmonate pathway alters herbivore feeding behaviour: consequences for plant defences. Entomol Exp Appl 115:125–134. doi:10.1111/j.1570-7458.2005.00277.x

    Article  CAS  Google Scholar 

  • Roslin T, Syrjälä H, Roland J, Harrison PJ, Fownes S, Matter SF (2008) Caterpillars on the run - induced defences create spatial patterns in host plant damage. Ecography 31:335–347

    Article  Google Scholar 

  • Schramm K, Vassão DG, Reichelt M, Gershenzon J, Wittstock U (2012) Metabolism of glucosinolate-derived isothiocyanates to glutathione conjugates in generalist lepidopteran herbivores. Insect Biochem Mol Biol 42:174–182. doi:10.1016/j.ibmb.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  • Schuman MC, Baldwin IT (2016) The layers of plant responses to insect herbivores. Annu Rev Entomol 61:373–394. doi:10.1146/annurev-ento-010715-023851

    Article  CAS  PubMed  Google Scholar 

  • Schweizer F, Bodenhausen N, Lassueur S, Masclaux FG, Reymond P (2013) Differential contribution of transcription factors to Arabidopsis thaliana defense against Spodoptera littoralis. Front Plant Sci 4. doi:10.3389/fpls.2013.00013

  • Scriber JM, Larsen ML, Allen GR, Walker PW, Zalucki MP (2008) Interactions between Papilionidae and ancient Australian angiosperms: evolutionary specialization or ecological monophagy? Entomol Exp Appl 128:230–239. doi:10.1111/j.1570-7458.2008.00691.x

    Article  Google Scholar 

  • Shroff R, Vergara F, Muck A, Svatoš A, Gershenzon J (2008) Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense. Proc Natl Acad Sci USA 105:6196–6201. doi:10.1073/pnas.0711730105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sønderby IE, Hansen BG, Bjarnholt N, Ticconi C, Halkier BA, Kliebenstein DJ (2007) A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates. PLoS One 2:e1322. doi:10.1371/journal.pone.0001322

    Article  PubMed  PubMed Central  Google Scholar 

  • Stork W, Diezel C, Halitschke R, Gális I, Baldwin IT (2009) An ecological analysis of the herbivory-elicited JA burst and its metabolism: plant memory processes and predictions of the moving target model. PLoS One 4:e4697. doi:10.1371/journal.pone.0004697

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun JY, Sønderby IE, Halkier BA, Jander G, de Vos M (2009) Non-volatile intact indole glucosinolates are host recognition cues for ovipositing Plutella xylostella. J Chem Ecol 35:1427–1436. doi:10.1007/s10886-009-9723-4

    Article  CAS  PubMed  Google Scholar 

  • Team RC (2015) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Textor S, Gershenzon J (2009) Herbivore induction of the glucosinolate–myrosinase defense system: major trends, biochemical bases and ecological significance. Phytochem rev 8:149–170. doi:10.1007/s11101-008-9117-1

    Article  CAS  Google Scholar 

  • Thakor SB, Patel IS (2008) Biology of Helicoverpa armigera (Hübner) on cabbage (Brassica oleracea L. var. capitata L.) Pest Manag Econ Zool 16:15–18

    Google Scholar 

  • Wittstock U, Kliebenstein D, Lambrix VM, Reichelt M, Gershenzon J (2003) Glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores. In: Romeo JT (ed) Recent advances in Phytochemistry - integrative Phytochemistry; From Ethnobotany to Molecular Ecology. Elsevier, Amsterdam, pp 101–126

  • Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu rev Genet 44:1–24. doi:10.1146/annurev-genet-102209-163500

    Article  CAS  PubMed  Google Scholar 

  • Zalucki MP, Daglish G, Firempong S, Twine P (1986) The biology and ecology of Heliothis armigera (Hübner) and H. punctigera Wallengren (Lepidoptera: Noctuidae) in Australia - what do we know? Aust J Zool 34:779–814

    Article  Google Scholar 

  • Zalucki MP, Clarke AR, Malcolm SB (2002) Ecology and behavior of first instar larval Lepidoptera. Annu Rev Entomol 47:361–393

    Article  CAS  PubMed  Google Scholar 

  • Zalucki MP, Malcolm SB, Hanlon CC, Paine TD (2012) First-instar monarch larval growth and survival on milkweeds in southern California: effects of latex, leaf hairs and cardenolides. Chemoecology 22:75–88. doi:10.1007/s00049-011-0099-x

    Article  Google Scholar 

  • Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR, Normanly J, Chory J, Celenza JL (2002) Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev 16:3100–3112. doi:10.1101/gad.1035402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu-Salzman K, Zeng R (2015) Insect response to plant defensive protease inhibitors. Annu rev Entomol 60:233–252. doi:10.1146/annurev-ento-010814-020816

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was undertaken while MPZ and JMZ were on study leave from UQ and GU respectively in 2011/12. MPZ was supported on a Queensland Government International Fellowship in 2012/13. The work was partly supported by ARC DP1095433 and the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Zalucki.

Electronic supplementary material

ESM 1

(XLSX 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zalucki, M.P., Zalucki, J.M., Perkins, L.E. et al. A Generalist Herbivore Copes with Specialized Plant Defence: the Effects of Induction and Feeding by Helicoverpa armigera (Lepidoptera: Noctuidae) Larvae on Intact Arabidopsis thaliana (Brassicales) Plants. J Chem Ecol 43, 608–616 (2017). https://doi.org/10.1007/s10886-017-0855-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-017-0855-7

Keywords

Navigation