Journal of Chemical Ecology

, Volume 43, Issue 5, pp 443–450 | Cite as

Effect of Brood Pheromone on Survival and Nutrient Intake of African Honey Bees (Apis mellifera scutellata) under Controlled Conditions

  • Fabien J. Démares
  • Abdullahi A. Yusuf
  • Susan W. Nicolson
  • Christian W. W. Pirk


The influence of pheromones on insect physiology and behavior has been thoroughly reported for numerous aspects, such as attraction, gland development, aggregation, mate and kin recognition. Brood pheromone (BP) is released by honey bee larvae to indicate their protein requirements to the colony. Although BP is known to modulate pollen and protein consumption, which in turn can affect physiological and morphological parameters, such as hypopharyngeal gland (HPG) development and ovarian activation, few studies have focused on the effect of BP on nutritional balance. In this study, we exposed newly emerged worker bees for 14 d and found that BP exposure increased protein intake during the first few days, with a peak in consumption at day four following exposure. BP exposure decreased survival of caged honey bees, but did not affect either the size of the HPG acini or ovarian activation stage. The uncoupling of the BP releaser effect, facilitated by working under controlled conditions, and the presence of larvae as stimulating cues are discussed.


Semiochemical Primer and releaser effects Survival Nutrient intake Hypopharyngeal glands Savannah honey bee 



FJD is supported by a postdoctoral fellowship from the University of Pretoria. The authors would like to thank Kendall Crous for beekeeping, Susana da Silva das Neves and Zoe van Vuuren for helping with dissections, and Alan Hall and the Laboratory for Microscopy and Microanalysis at the University of Pretoria for the HPG pictures.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10886_2017_840_MOESM1_ESM.pdf (696 kb)
ESM 1 (PDF 695 kb)


  1. Altaye SZ, Pirk CWW, Crewe RM, Nicolson SW (2010) Convergence of carbohydrate-biased intake targets in caged worker honeybees fed different protein sources. J Exp Biol 213:3311–3318CrossRefPubMedGoogle Scholar
  2. Archer CR, Pirk CWW, Wright GA, Nicolson SW (2014) Nutrition affects survival in African honeybees exposed to interacting stressors. Funct Ecol 28:913–923CrossRefGoogle Scholar
  3. Brand JM, Young JC, Silverstein RM (1979) Insect pheromones: a critical review of recent advances in their chemistry, biology, and application. In: Albersheim P, Brand JM, Darvill AG et al (eds) Fortschritte der Chemie organischer Naturstoffe/progress in the chemistry of organic natural products. Springer Vienna, Vienna, pp 1–190CrossRefGoogle Scholar
  4. Brodschneider R, Crailsheim K (2010) Nutrition and health in honey bees. Apidologie 41:278–294CrossRefGoogle Scholar
  5. Crailsheim K (1990) The protein balance of the honey bee worker. Apidologie 21:417–429CrossRefGoogle Scholar
  6. Crailsheim K, Schneider LHW, Hrassnigg N et al (1992) Pollen consumption and utilization in worker honeybees (Apis mellifera carnica): dependence on individual age and function. J Insect Physiol 38:409–419CrossRefGoogle Scholar
  7. Démares FJ, Crous KL, Pirk CWW et al (2016) Sucrose sensitivity of honey bees is differently affected by dietary protein and a neonicotinoid pesticide. PLoS One 11:e0156584CrossRefPubMedPubMedCentralGoogle Scholar
  8. Du Plessis LM, De Villiers JBM, Van Der Walt WHJ (1985) Stability studies on methyl and ethyl fatty acid esters of sunflower seed oil. Am Oil Chem Soc 62:748CrossRefGoogle Scholar
  9. Dussutour A, Simpson SJ (2009) Communal nutrition in ants. Curr Biol 19:740–744CrossRefPubMedGoogle Scholar
  10. Dussutour A, Simpson SJ (2012) Ant workers die young and colonies collapse when fed a high-protein diet. P Roy Soc Lond B: Bio 279:2402–2408CrossRefGoogle Scholar
  11. Hagedorn HH, Moeller FE (1967) The rate of pollen consumption by newly emerged honeybees. J Apic Res 6:159–162CrossRefGoogle Scholar
  12. Haydak MH (1970) Honey bee nutrition. Annu Rev Entomol 15:143–156CrossRefGoogle Scholar
  13. Hoover SER, Higo HA, Winston ML (2006) Worker honey bee ovary development: seasonal variation and the influence of larval and adult nutrition. J Comp Physiol B 176:55–63CrossRefPubMedGoogle Scholar
  14. Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393CrossRefPubMedGoogle Scholar
  15. Hrassnigg N, Crailsheim K (1998) Adaptation of hypopharyngeal gland development to the brood status of honeybee (Apis mellifera L.) colonies. J Insect Physiol 44:929–939CrossRefPubMedGoogle Scholar
  16. Huang Z-Y, Otis GW (1989) Factors determining hypopharyngeal gland activity of worker honey bees (Apis mellifera L.) Insect Soc 36:264–276CrossRefGoogle Scholar
  17. Huang Z-Y, Otis GW, Teal PEA (1989) Nature of brood signal activating the protein synthesis of hypopharyngeal gland in honey bees, Apis mellifera (Apidae: hymenoptera). Apidologie 20:455–464CrossRefGoogle Scholar
  18. Human H, Nicolson SW, Strauss K et al (2007) Influence of pollen quality on ovarian development in honeybee workers (Apis mellifera scutellata). J Insect Physiol 53:649–655CrossRefPubMedGoogle Scholar
  19. Karlson P, Butenandt A (1959) Pheromones (ectohormones) in insects. Annu Rev Entomol 4:39–58CrossRefGoogle Scholar
  20. Köhler A, Pirk CWW, Nicolson SW (2012a) Honeybees and nectar nicotine: deterrence and reduced survival versus potential health benefits. J Insect Physiol 58:286–292CrossRefPubMedGoogle Scholar
  21. Köhler A, Pirk CWW, Nicolson SW (2012b) Simultaneous stressors: interactive effects of an immune challenge and dietary toxin can be detrimental to honeybees. J Insect Physiol 58:918–923CrossRefPubMedGoogle Scholar
  22. Köhler A, Nicolson SW, Pirk CWW (2013) A new design for honey bee hoarding cages for laboratory experiments. J Apic Res 52:12–14CrossRefGoogle Scholar
  23. Le Conte Y, Arnold G, Trouiller J et al (1990) Identification of a brood pheromone in honeybees. Naturwissenschaften 77:334–336CrossRefGoogle Scholar
  24. Le Conte Y, Sreng L, Poitout SH (1995) Brood pheromone can modulate the feeding behavior of Apis mellifera workers (Hytnenoptera: Apidae). J Econ Entomol 88:798CrossRefGoogle Scholar
  25. Le Conte Y, Mohammedi A, Robinson GE (2001) Primer effects of a brood pheromone on honeybee behavioural development. Proc Biol Sci 268:163CrossRefPubMedPubMedCentralGoogle Scholar
  26. Leoncini I, Le Conte Y, Costagliola G et al (2004) Regulation of behavioral maturation by a primer pheromone produced by adult worker honey bees. Proc Natl Acad Sci U S A 101:17559–17564CrossRefPubMedPubMedCentralGoogle Scholar
  27. Metz BN, Pankiw T, Tichy SE et al (2010) Variation in and responses to brood pheromone of the honey bee (Apis mellifera L.) J Chem Ecol 36:432–440CrossRefPubMedGoogle Scholar
  28. Michelette EF, Soares A (1993) Characterization of preimaginal developmental stages in Africanized honey bee workers (Apis mellifera L). Apidologie 24:431–431CrossRefGoogle Scholar
  29. Mohammedi A, Crauser D, Paris A, Le Conte Y (1996) Effect of a brood pheromone on honeybee hypopharyngeal glands. C R Acad Sci III Sci Vie 319:769–772Google Scholar
  30. Münch D, Kreibich CD, Amdam GV (2013) Aging and its modulation in a long-lived worker caste of the honey bee. J Exp Biol 216:1638CrossRefPubMedPubMedCentralGoogle Scholar
  31. Okosun OO, Yusuf AA, Crewe RM, Pirk CW (2015) Effects of age and reproductive status on tergal gland secretions in queenless honeybee workers Apis mellifera scutellata and A. M. capensis. J Chem Ecol 41:896–903CrossRefPubMedGoogle Scholar
  32. Pankiw T (2004) Cued in: honey bee pheromones as information flow and collective decision-making. Apidologie 35:217–226CrossRefGoogle Scholar
  33. Pankiw T (2007) Brood pheromone modulation of pollen forager turnaround time in the honey bee (Apis mellifera L.) J Insect Behav 20:173–180CrossRefGoogle Scholar
  34. Pankiw T, Page ER Jr, Kim Fondrk M (1998) Brood pheromone stimulates pollen foraging in honey bees (Apis mellifera). Behav Ecol Sociobiol 44:193–198CrossRefGoogle Scholar
  35. Pankiw T, Page RE (2003) Effect of pheromones, hormones, and handling on sucrose response thresholds of honey bees (Apis mellifera L.). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189(9):675–684Google Scholar
  36. Pankiw T, Sagili RR, Metz BN (2008) Brood pheromone effects on colony protein supplement consumption and growth in the honey bee (hymenoptera: Apidae) in a subtropical winter climate. J Econ Entomol 101:1749CrossRefPubMedGoogle Scholar
  37. Pankiw T, Lafontaine JP, Avelino N (2010) Stabilized brood pheromone for manipulating the behavior and physiology of honey bees United States Patent No: 7727517Google Scholar
  38. Pernal SF, Currie RW (2000) Pollen quality of fresh and 1-year-old single pollen diets for worker honey bees (Apis mellifera L.) Apidologie 31:387–409CrossRefGoogle Scholar
  39. Peters L, Zhu-Salzman K, Pankiw T (2010) Effect of primer pheromones and pollen diet on the food producing glands of worker honey bees (Apis mellifera L.) J Insect Physiol 56:132–137CrossRefPubMedGoogle Scholar
  40. Pirk CWW, Boodhoo C, Human H, Nicolson SW (2010) The importance of protein type and protein to carbohydrate ratio for survival and ovarian activation of caged honeybees (Apis mellifera scutellata). Apidologie 41:62–72CrossRefGoogle Scholar
  41. Rembold H, Kremer J-P, Ulrich GM (1980) Characterization of postembryonic developmental stages of the female castes of the honey bee, Apis mellifera L. Apidologie 11:29–38CrossRefGoogle Scholar
  42. Simpson SJ, Raubenheimer D (2012) The nature of nutrition: a unifying framework from animal adaptation to human obesity. Princeton University Press, PrincetonCrossRefGoogle Scholar
  43. Slessor KN, Winston ML, Le Conte Y (2005) Pheromone communication in the honeybee (Apis mellifera L.) J Chem Ecol 31:2731–2745CrossRefPubMedGoogle Scholar
  44. Smedal B, Brynem M, Kreibich CD, Amdam GV (2009) Brood pheromone suppresses physiology of extreme longevity in honeybees (Apis mellifera). J Exp Biol 212:3795CrossRefPubMedGoogle Scholar
  45. Standifer LN (1967) A comparison of the protein quality of pollens for growth-stimulation of the hypopharyngeal glands and longevity of honey bees, Apis mellifera L. (hymenoptera: Apidae). Insect Soc 14:415–425CrossRefGoogle Scholar
  46. Wilson EO, Bossert WH (1963) Chemical communication among animals. Recent Prog Horm Res 19:673–716PubMedGoogle Scholar
  47. Winston ML (1991) The biology of the honey bee. Harvard University Press, CambridgeGoogle Scholar
  48. Yew JY, Chung H (2015) Insect pheromones: an overview of function, form, and discovery. Prog Lipid Res 59:88–105CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Fabien J. Démares
    • 1
  • Abdullahi A. Yusuf
    • 1
  • Susan W. Nicolson
    • 1
  • Christian W. W. Pirk
    • 1
  1. 1.Social Insects Research Group, Department of Zoology & EntomologyUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations