Journal of Chemical Ecology

, Volume 43, Issue 4, pp 403–410 | Cite as

Diploid Male Production Results in Queen Death in the Stingless Bee Scaptotrigona depilis

  • Ayrton Vollet-NetoEmail author
  • Ricardo C. Oliveira
  • Sharon Schillewaert
  • Denise A. Alves
  • Tom Wenseleers
  • Fabio S. Nascimento
  • Vera L. Imperatriz-Fonseca
  • Francis L. W. Ratnieks


As in most Hymenoptera, the eusocial stingless bees (Meliponini) have a complementary sex determination (CSD) system. When a queen makes a “matched mating” with a male that shares a CSD allele with her, half of their diploid offspring are diploid males rather than females. Matched mating imposes a cost, since diploid male production reduces the colony workforce. Hence, adaptations preventing the occurrence or attenuating its effects are likely to arise. Here we provide clear evidence that in the stingless bee Scaptotrigona depilis, the emergence of diploid males induces queen death, and this usually occurs within 10–20 days of the emergence of diploid male offspring from their pupae. Queens that have not made a matched mating die when introduced into a colony in which diploid males are emerging. This shows that the adult diploid males, and not the queen that has made a matched mating herself, are the proximate cause of queen death. Analysis of the cuticular hydrocarbon profiles of adult haploid and diploid males shows six compounds with significant differences. Moreover, the diploid and haploid males only acquire distinct cuticular hydrocarbon profiles 10 days after emergence. Our data shows that the timing of queen death occurs when the cuticular hydrocarbons of haploid and diploid males differ significantly, suggesting that these chemical differences could be used as cues or signals to trigger queen death.


Sex determination Diploid male load Queen execution Chemical recognition 



The authors thank Christoph Grüeter for valuable comments on the manuscript. The study was financially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP (AVN grant 2012/11144-0, FSN grant 2015/25301-9), Conselho Nacional de Desenvolvimento Científico e Tecnológico (AVN grant 229944/2013-2; RCO grant 238127/2012-5; DAA grant 470372/2013-3) and PNPD/CAPES to DAA.

Supplementary material

10886_2017_839_MOESM1_ESM.docx (2.1 mb)
ESM 1 (DOCX 2134 kb)


  1. Aitchison J (1982) The statistical analysis of compositional data. J Roy Stat Soc B Met 44:139–177. doi: 10.1007/978-94-009-4109-0 Google Scholar
  2. Alves DA, Imperatriz-Fonseca VL, Francoy TM, Santos P, Billen J, Wenseleers T (2011) Successful maintenance of a stingless bee population despite a severe genetic bottleneck. Conserv Genet 12:647–658. doi: 10.1007/s10592-010-0171-z CrossRefGoogle Scholar
  3. Baer B, Collins J, Maalaps K, Boer S (2016) Sperm use economy of honeybee (Apis mellifera) queens. Ecol Evol 6:2877–2885. doi: 10.1002/ece3.2075 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bego LR (1982) On social regulation in Nannotrigona (Scaptotrigona) postica Latreille, with special reference to male production cycles (Hymenoptera, Apidae, Meliponinae). Bolm Zool Univ S Paulo 7:181–196Google Scholar
  5. Borges AA, Ferreira-Caliman MJ, Nascimento FS, Campos LAO, Tavares MG (2012) Characterization of cuticular hydrocarbons of diploid and haploid males, workers and queens of the stingless bee Melipona quadrifasciata. Insect Soc 59:479–486. doi: 10.1007/s00040-012-0242-x CrossRefGoogle Scholar
  6. Bourke AF (1994) Worker matricide in social bees and wasps. J Theor Biol 167:283–292. doi: 10.1006/jtbi.1994.1070 CrossRefGoogle Scholar
  7. Butler CG (1957) The process of queen supersedure in colonies of honeybees (Apis mellifera Linn.) Insect Soc 4:211–223. doi: 10.1007/BF02222154 CrossRefGoogle Scholar
  8. Camargo CA (1976) Determinação do sexo e controle de reprodução em Melipona quadrifasciata anthidioides Lep. (Hymenoptera, Apoidea). Dissertation, University of Sao PauloGoogle Scholar
  9. Camargo CA (1979) Sex determination in bees. XI Production of diploid males and sex determination in Melipona quadrifasciata. J Apic Res 18:77–84. doi: 10.1080/00218839.1979.11099950 CrossRefGoogle Scholar
  10. Cameron EC, Franck P, Oldroyd BP (2004) Genetic structure of nest aggregations and drone congregations of the southeast Asian stingless bee Trigona collina. Mol Ecol 13:2357–2364. doi: 10.1111/j.1365-294X.2004.02194.x
  11. Clopper CJ, Pearson ES (1934) The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26(4):404–413. doi: 10.1093/biomet/26.4.404 CrossRefGoogle Scholar
  12. Cook J, Crozier RH (1995) Sex determination and population biology in the Hymenoptera. Trends Ecol Evol 10:281–286. doi: 10.1016/0169-5347(95)90011-X CrossRefPubMedGoogle Scholar
  13. dos Santos CF, Imperatriz-Fonseca VL, Arias MC (2016) Relatedness and dispersal distance of eusocial bee males on mating swarms. Entomol Sci 19(3):245–254Google Scholar
  14. Duarte OMP, Gaiotto FA, Souza AP, Mori GM, Costa MA (2011) Isolation and characterization of microsatellites from Scaptotrigona xanthotricha (Apidae, Meliponini): a stingless bee in the Brazilian Atlantic rainforest. Apidologie 43:432–435. doi: 10.1007/s13592-011-0109-6 CrossRefGoogle Scholar
  15. Falcón T, Ferreira-Caliman MJ, Nunes FMF, Tanaka ÉD, do Nascimento FS, MMG B (2014) Exoskeleton formation in Apis mellifera: Cuticular hydrocarbons profiles and expression of desaturase and elongase genes during pupal and adult development. Insect Biochem Mol Biol 50:68–81. doi: 10.1016/j.ibmb.2014.04.006 CrossRefGoogle Scholar
  16. Francini IB, Nunes-Silva CG, Carvalho-Zilse GA (2012) Diploid male production of two Amazonian Melipona bees (Hymenoptera: Apidae). Psyche 2012:1–7. doi: 10.1155/2012/484618 CrossRefGoogle Scholar
  17. Francisco FO, Brito RM, Santiago LR, Gonçalves PHP, Pioker FC, Domingues-Yamada AMT, Arias MC (2011) Isolation and characterization of 15 microsatellite loci in the stingless bee Plebeia remota (Apidae: Meliponini). Conserv Genet Resour 3:417–419. doi: 10.1007/s12686-010-9369-0 CrossRefGoogle Scholar
  18. Green CL, Oldroyd BP (2002) Queen mating frequency and maternity of males in the stingless bee Trigona carbonaria Smith. Insect Soc 49:196–202. doi: 10.1007/s00040-002-8301-3 CrossRefGoogle Scholar
  19. Heimpel GE, de Boer JG (2008) Sex determination in the Hymenoptera. Annu Rev Entomol 53:209–230. doi: 10.1146/annurev.ento.53.103106.093441 CrossRefPubMedGoogle Scholar
  20. Imperatriz-Fonseca VL, Zucchi R (1995) Virgin queens in stingless bees (Apidae, Meliponinae) colonies. Apidologie 26:231–231CrossRefGoogle Scholar
  21. Kärcher MH, Menezes C, Alves DA, Beveridge OS, Imperatriz-Fonseca VL, Ratnieks FLW (2013) Factors influencing survival duration and choice of virgin queens in the stingless bee Melipona quadrifasciata. Naturwissenschaften 100:571–580. doi: 10.1007/s00114-013-1053-2 CrossRefPubMedGoogle Scholar
  22. Kerr WE (1987) Sex determination in bees XXI. Number of xo-heteroalleles in a natural population of Melipona compressipes fasciculata (Apidae). Insect Soc 34:274–279CrossRefGoogle Scholar
  23. LeConte YL, Hefetz A (2008) Primer pheromones in social Hymenoptera. Annu Rev Entomol 53:523–542. doi: 10.1146/annurev.ento.52.110405.091434 CrossRefGoogle Scholar
  24. Loope KJ (2015) Queen killing is linked to high worker-worker relatedness in a social wasp. Curr Biol 25:2976–2979. doi: 10.1016/j.cub.2015.09.064 CrossRefPubMedGoogle Scholar
  25. Oi CA, Van Oystaeyen A, Oliveira RC, Millar JG, Verstrepen KJ, van Zweden JS, Wenseleers T (2015a) Dual effect of wasp queen pheromone in regulating insect sociality. Curr Biol 25:1638–1640. doi: 10.1016/j.cub.2015.04.040 CrossRefPubMedGoogle Scholar
  26. Oi CA, van Zweden JS, Oliveira RC, Van Oystaeyen A, Nascimento FS, Wenseleers T (2015b) The origin and evolution of social insect queen pheromones: novel hypotheses and outstanding problems. BioEssays 37:808–821. doi: 10.1002/bies.201400180 CrossRefPubMedGoogle Scholar
  27. Oliveira RC, Oi CA, do Nascimento MMC, Vollet-Neto A, Alves DA, Campos MC, Nascimento F, Wenseleers T (2015) The origin and evolution of queen and fertility signals in Corbiculate bees. BMC Evol Biol 15(1):254. doi: 10.1186/s12862-015-0509-8 CrossRefGoogle Scholar
  28. Page RE, Metcalf RA (1982) Multiple mating, sperm utilization, and social evolution. Am Nat 119:263–281. doi: 10.1086/283907 CrossRefGoogle Scholar
  29. Paxton RJ, Weissschuh N, Quezada-Euán JJG (1999) Characterization of dinucleotide microsatellite loci for stingless bees. Mol Ecol 8:690–692. doi: 10.1046/j.1365-294x.1999.00874.x CrossRefPubMedGoogle Scholar
  30. Paxton RJ, Bego LR, Shah MM, Mateus S (2003) Low mating frequency of queens in the stingless bee Scaptotrigona postica and worker maternity of males. Behav Ecol Sociobiol 53:174–181. doi: 10.1007/s00265-002-0561-4 Google Scholar
  31. Poiani SB, Morgan ED, Drijfhout FP, da Cruz-Landim C (2014) Separation of Scaptotrigona postica workers into defined task groups by the chemical profile on their epicuticle wax layer. J Chem Ecol 40:331. doi: 10.1007/s10886-014-0423-3 CrossRefPubMedGoogle Scholar
  32. Rangel J, Seeley TD (2012) Colony fissioning in honey bees: size and significance of the swarm fraction. Insect Soc 59:453–462. doi: 10.1007/s00040-012-0239-5 CrossRefGoogle Scholar
  33. Ratnieks FLW (1990) The evolution of polyandry by queens in social Hymenoptera - the significance of the timing of removal of diploid males. Behav Ecol Sociobiol 26:343–348. doi: 10.1007/BF00171100 CrossRefGoogle Scholar
  34. Ratnieks FLW, Foster KR, Wenseleers T (2006) Conflict resolution in insect societies. Annu Rev Entomol 51:581–608. doi: 10.1146/annurev.ento.51.110104.151003 CrossRefPubMedGoogle Scholar
  35. Santomauro G, Oldham NJ, Boland W, Engels W (2004) Cannibalism of diploid drone larvae in the honeybee (Apis mellifera) is released by odd pattern of cuticular substances. J Apic Res 43:69–74. doi: 10.1080/00218839.2004.11101114 CrossRefGoogle Scholar
  36. Smith AA, Holldober B, Liebig J (2009) Cuticular hydrocarbons reliably identify cheaters and allow enforcement of altruism in a social insect. Curr Biol 19:78–81. doi: 10.1016/j.cub.2008.11.059 CrossRefPubMedGoogle Scholar
  37. van Oystaeyen A, Oliveira RC, Holman L, van Zweden JS, Romero C, Oi CA, Wenseleers T (2014) Conserved class of queen pheromones stops social insect workers from reproducing. Science 343:287–290. doi: 10.1126/science.1244899 CrossRefPubMedGoogle Scholar
  38. van Wilgenburg E, Driessen G, Beukeboom LW (2006) Single locus complementary sex determination in Hymenoptera: an “unintelligent” design. Front Zool 3. doi: 10.1186/1742-9994-3-1
  39. van Zweden J, d'Ettore P (2010) Nestmate recognition in social insects and the role of hydrocarbons. In: Blomquist GJ, Bagnères AG (eds) Insect hydrocarbons biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 222–243CrossRefGoogle Scholar
  40. Wenseleers T, Hart AG, Ratnieks FLW (2004) Queen execution and caste conflict in the stingless bee Melipona beecheii. Ethology 110:725–736CrossRefGoogle Scholar
  41. Whiting P (1943) Multiple alleles in complementary sex determination of Habrobracon. Genetics 28:365–382PubMedPubMedCentralGoogle Scholar
  42. Woyke J (1962) The hatchability of ‘lethal’ eggs in a two sex-allele fraternity of honeybees. J Apic Res 1:6–13CrossRefGoogle Scholar
  43. Woyke J (1963) What happens to diploid drone larvae in a honeybee colony. J Apic Res 2:73–75CrossRefGoogle Scholar
  44. Woyke J (1979) Sex determination in Apis cerana indica. J Apic Res 18:122–127CrossRefGoogle Scholar
  45. Zayed A, Packer L (2005) Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proc Natl Acad Sci U S A 102:10742. doi: 10.1073/pnas.0502271102 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ayrton Vollet-Neto
    • 1
    Email author
  • Ricardo C. Oliveira
    • 2
  • Sharon Schillewaert
    • 2
  • Denise A. Alves
    • 3
  • Tom Wenseleers
    • 2
  • Fabio S. Nascimento
    • 1
  • Vera L. Imperatriz-Fonseca
    • 1
    • 4
  • Francis L. W. Ratnieks
    • 5
  1. 1.Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão PretoUniversidade de São PauloSão PauloBrazil
  2. 2.Laboratory of Socioecology and Social Evolution, Zoological InstituteKU LeuvenLeuvenBelgium
  3. 3.Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz”Universidade de São PauloPiracicabaBrazil
  4. 4.Instituto Tecnológico ValeBelémBrazil
  5. 5.Laboratory of Apiculture & Social Insects (LASI), School of Life SciencesUniversity of SussexBrightonUK

Personalised recommendations