A Herbivore Tag-and-Trace System Reveals Contact- and Density-Dependent Repellence of a Root Toxin

Abstract

Foraging behavior of root feeding organisms strongly affects plant-environment-interactions and ecosystem processes. However, the impact of plant chemistry on root herbivore movement in the soil is poorly understood. Here, we apply a simple technique to trace the movement of soil-dwelling insects in their habitats without disturbing or restricting their interactions with host plants. We tagged the root feeding larvae of Melolontha melolontha with a copper ring and repeatedly located their position in relation to their preferred host plant, Taraxacum officinale, using a commercial metal detector. This method was validated and used to study the influence of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) on the foraging of M. melolontha. TA-G is stored in the latex of T. officinale and protects the roots from herbivory. Using behavioral arenas with TA-G deficient and control plants, we tested the impact of physical root access and plant distance on the effect of TA-G on M. melolontha. The larvae preferred TA-G deficient plants to control plants, but only when physical root contact was possible and the plants were separated by 5 cm. Melolontha melolontha showed no preference for TA-G deficient plants when the plants were grown 15 cm apart, which may indicate a trade-off between the cost of movement and the benefit of consuming less toxic food. We demonstrate that M. melolontha integrates host plant quality and distance into its foraging patterns and suggest that plant chemistry affects root herbivore behavior in a plant-density dependent manner.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Agrawal AA, Konno K (2009) Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu Rev Ecol Evol Syst 40:311–331

    Article  Google Scholar 

  2. Barnett K, Johnson SN (2013) Living in the soil matrix: abiotic factors affecting root herbivores. In: Johnson SN, Hiltpold I, Turlings TCJ (eds) Advances in insect physiology, San Diego: Elsevier Academic Press Inc, pp 1–52

  3. Bates D, Maechler M, Bolker BM, Walker S (2015) Fitting linear mixed-effects models using {lme4}. J Stat Softw 67:1–48

    Article  Google Scholar 

  4. Bernklau EJ, Bjostad LB (2008) Identification of feeding stimulants in corn roots for western corn rootworm (Coleoptera: Chrysomelidae) larvae. J Econ Entomol 101:341–351

    CAS  Article  PubMed  Google Scholar 

  5. Charnov EL (1976) Optimal foraging, the marginal value theorem. Theor Popul Biol 136:129–136

    Article  Google Scholar 

  6. Core Team R (2016) R: a language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria, In http://www.r-project.org/

    Google Scholar 

  7. van Dam NM (2009) Belowground herbivory and plant defenses. Annu Rev Ecol Evol Syst 40:373–391

    Article  Google Scholar 

  8. van Dam NM, Bouwmeester HJ (2016) Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci 21:256–265

    Article  PubMed  Google Scholar 

  9. Dawson LA, Grayston SJ, Murray PJ, Pratt SM (2002) Root feeding behavior of Tipula paludosa (Meig.) (Diptera: Tipulidae) on Lolium perenne (L.) and Trifolium repens (L.) Soil Biol Biochem 34:609–615

    CAS  Article  Google Scholar 

  10. Duggan RE, Miller RJ (2001) External and internal tags for the green sea urchin. J Exp Mar Biol Ecol 258:115–122

    Article  PubMed  Google Scholar 

  11. Eilers EJ, Talarico G, Hansson BS et al (2012) Sensing the underground - ultrastructure and function of sensory organs in root-feeding Melolontha melolontha (Coleoptera: Scarabaeinae) larvae. PLoS One 7:e41357

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Eilers EJ, Veit D, Rillig MC et al (2016) Soil substrates affect responses of root feeding larvae to their hosts at multiple levels: orientation, locomotion and feeding. Basic Appl Ecol 17:115–124

    Article  Google Scholar 

  13. Erb M, Ton J, Degenhardt J, Turlings TCJ (2008) Interactions between arthropod-induced aboveground and belowground defenses in plants. Plant Physiol 146:867–874

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Erb M, Huber M, Robert CAM et al (2013) The role of plant primary and secondary metabolites in root-herbivore behavior, nutrition and physiology. In: Johnson SN, Hiltpold I, Turlings TCJ (eds) Advances in insect physiology, San Diego: Elsevier Academic Press Inc, p 53–95

  15. Erb M, Robert CAM, Marti G et al (2015) A physiological and behavioral mechanism for leaf-herbivore induced systemic root resistance. Plant Physiol 169:2884–2894

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Farrell BD, Dussourd DE, Mitter C (1991) Escalation of plant defense: do latex and resin canals spur plant diversification? Am Nat 138:881–900

    Article  Google Scholar 

  17. Fox J, Weisberg S (2011) An {R} companion to applied regression, 2nd edn. Sage, Thousand Oaks CA

    Google Scholar 

  18. Gerard PJ, Crush JR, Hackell DL (2005) Interaction between Sitona lepidus and red clover lines selected for formononetin content. Ann Appl Biol 147:173–181

    Article  Google Scholar 

  19. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, New York

  20. Hauss R (1975) Methoden und erste Ergebnisse zur Bestimmung der Wirtspflanzen des Maikäferengerlings (Melolontha melolontha L.) Mitteilungen aus der Biol Bundesanstalt für Land- und Forstwirtschaft Berlin Dahlen 163:72–77

    Google Scholar 

  21. Hauss R, Schütte F (1976) Zur Polyphagie der Engerlinge von Melolontha melolontha L. an Pflanzen aus Wiese und Ödland. Anzeiger für Schädlingskd 49:129–132

    Article  Google Scholar 

  22. Huber M, Triebwasser-Freese D, Reichelt M et al (2015) Identification, quantification, spatiotemporal distribution and genetic variation of major latex secondary metabolites in the common dandelion (Taraxacum officinale agg.) Phytochemistry 115:89–98

    CAS  Article  PubMed  Google Scholar 

  23. Huber M, Bont Z, Fricke J et al (2016a) A below-ground herbivore shapes root defensive chemistry in natural plant populations. Proc R Soc B-Biol Sci 283:20160285

    Article  Google Scholar 

  24. Huber M, Epping J, Schulze Gronover C et al (2016b) A latex metabolite benefits plant fitness under root herbivore attack. PLoS Biol 14:1–27

    Article  Google Scholar 

  25. Hunter MD (2001) Out of sight, out of mind: the impacts of root-feeding insects in matural managed systems. Agric For Entomol 3:3–9

    Article  Google Scholar 

  26. Johnson SN, Gregory PJ (2006) Chemically-mediated host-plant location and selection by root-feeding insects. Physiol Entomol 31:1–13

    CAS  Article  Google Scholar 

  27. Johnson SN, Nielsen UN (2012) Foraging in the dark - chemically mediated host plant location by belowground insect herbivores. J Chem Ecol 38:604–614

    CAS  Article  PubMed  Google Scholar 

  28. Johnson SN, Read DB, Gregory PJ (2004) Tracking larval insect movement within soil using high resolution X-ray microtomography. Ecol Entomol 29:117–122

    Article  Google Scholar 

  29. Johnson SN, Crawford JW, Gregory PJ et al (2007) Non-invasive techniques for investigating and modelling root-feeding insects in managed and natural systems. Agric For Entomol 9:39–46

    Article  Google Scholar 

  30. Johnson SN, Erb M, Hartley SE (2016) Roots under attack: contrasting plant responses to below- and aboveground insect herbivory. New Phytol 210:413–418

    Article  PubMed  Google Scholar 

  31. Lenth RV (2016) Least-squares means: the {R} package {lsmeans}. J Stat Softw 69:1–33

    Article  Google Scholar 

  32. Lihoreau M, Chittka L, Raine NE (2011) Trade-off between travel distance and prioritization of high-reward sites in traplining bumblebees. Funct Ecol 25:1284–1292

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu XF, Chen HH, Li JK et al (2016) Volatiles released by Chinese liquorice roots mediate host location behavior by neonate Porphyrophora sophorae (Hemiptera: Margarodidae). Pest Manag Sci 72:1959–1964

    CAS  Article  PubMed  Google Scholar 

  34. Luna F, Antinuchi CD (2006) Cost of foraging in the subterranean rodent Ctenomys talarum: effect of soil hardness. Can J Zool 84:661–667

    Article  Google Scholar 

  35. Mankin RW, Brandhorst-Hubbard J, Flanders KL et al (2000) Eavesdropping on insects hidden in soil and interior structures of plants. J Econ Entomol 93:1173–1182

    CAS  Article  PubMed  Google Scholar 

  36. Metcalfe CR (1967) Distribution of latex in the plant kingdom. Econ Bot 21:115–127

    Article  Google Scholar 

  37. Mochizuki A, Ishikawa Y, Matsumoto Y (1985) Sugars as phagostimulants for larvae of the onion fly, Hylemya antiqua Meigen (Diptera: Anthomyiidae). Appl Entomol Zool 20:465–469

    CAS  Google Scholar 

  38. Murray PJ, Gregory PJ, Granger SJ et al (2010) Dispersal of soil-dwelling clover root weevil (Sitona lepidus Gyllenhal, Coleoptera: Curculionidae) larvae in mixed plant communities. Appl Soil Ecol 46:422–425

    Article  Google Scholar 

  39. Nathan R, Getz WM, Revilla E et al (2008) A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci U S A 105:19052–19059

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Nordenhem H, Nordlander G (1994) Olfactory oriented migration through soil by root-living Hylobius abietis (L.) larvae (Col., Curculionidae). J Appl Entomol 117:457–462

    Article  Google Scholar 

  41. Perissinotti PP, Antenucci CD, Zenuto R, Luna F (2009) Effect of diet quality and soil hardness on metabolic rate in the subterranean rodent Ctenomys talarum. Comp Biochem Phys A 154:298–307

    Article  Google Scholar 

  42. Piper RW, Compton SG (2002) A novel technique for relocating concealed insects. Ecol Entomol 27:251–253

    Article  Google Scholar 

  43. Piper RW, Lewis Z, Compton SG (2014) Life in the leaf-litter: a novel metal detector technique to investigate the over-wintering survival of rare, case-bearing beetle larvae. J Insect Conserv 18:1163–1169

    Article  Google Scholar 

  44. Popham HJR, Shelby KS, Brandt SL, Coudron TA (2004) Potent virucidal activity in larval Heliothis virescens plasma against Helicoverpa zea single capsid nucleopolyhedrovirus. J Gen Virol 85:2255–2261

    CAS  Article  PubMed  Google Scholar 

  45. van der Putten WH (2003) Plant defence belowground and spatiotemporal processes. Ecology 84:2269–2280

    Article  Google Scholar 

  46. Pyke GH (1984) Optimal foraging theory: a critical review. Annu Rev Ecol Syst 15:523–575

    Article  Google Scholar 

  47. Rasmann S, Köllner TG, Degenhardt J et al (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    CAS  Article  PubMed  Google Scholar 

  48. Reinecke A, Müller F, Hilker M (2008) Attractiveness of CO2 released by root respiration fades on the background of root exudates. Basic Appl Ecol 9:568–576

    CAS  Article  Google Scholar 

  49. Robert CAM, Erb M, Duployer M et al (2012a) Herbivore-induced plant volatiles mediate host selection by a root herbivore. New Phytol 194:1061–1069

    CAS  Article  PubMed  Google Scholar 

  50. Robert CAM, Veyrat N, Glauser G et al (2012b) A specialist root herbivore exploits defensive metabolites to locate nutritious tissues. Ecol Lett 15:55–64

    Article  PubMed  Google Scholar 

  51. Schmelz EA, Grebenok RJ, Ohnmeiss TE, Bowers WS (2002) Interactions between Spinacia oleracea and Bradysia impatiens: a role for phytoecdysteroids. Arch Insect Biochem Physiol 51:204–221

    CAS  Article  PubMed  Google Scholar 

  52. Schumann M, Vidal S (2012) Dispersal and spatial distribution of western corn rootworm larvae in relation to root phenology. Agric For Entomol 14:331–339

    Article  Google Scholar 

  53. Schumann M, Patel A, Vidal S (2013) Evaluation of an attract and kill strategy for western corn rootworm larvae. J Pest Sci (2004) 87:259–271

  54. Soler R, Bezemer TM, Van Der Putten WH et al (2005) Root herbivore effects on above-ground herbivore, parasitoid and hyperparasitoid performance via changes in plant quality. J Anim Ecol 74:1121–1130

    Article  Google Scholar 

  55. Sonnemann I, Grunz S, Wurst S (2014) Horizontal migration of click beetle (Agriotes spp.) larvae depends on food availability. Entomol Exp Appl 150:174–178

    Article  Google Scholar 

  56. Sutherland ORW, Hillier JR (1974) Feeding behavior of the grass grub Costelytra zealandica (white) (Coleoptera: Melolonthinae). New Zeal J Zool 1:211–216

    CAS  Article  Google Scholar 

  57. Sutherland ORW, Hillier JR (1976) The influence of maltose and other carbohydrates on the feeding behavior of Heteronychus arator (Scarabaeidae: Coleoptera). Experientia 32:701–702

    CAS  Article  Google Scholar 

  58. Sutherland ORW, Russell GB, Biggs DR, Lane GA (1980) Insect feeding deterrent activity of phytoalexin isoflavonoids. Biochem Syst Ecol 8:73–75

    CAS  Article  Google Scholar 

  59. van Tol RWHM, van der Sommen ATC, Boff MIC et al (2001) Plants protect their roots by alerting the enemies of grubs. Ecol Lett 4:292–294

    Article  Google Scholar 

  60. Verhoeven KJF, Van Dijk PJ, Biere A (2010) Changes in genomic methylation patterns during the formation of triploid asexual dandelion lineages. Mol Ecol 19:315–324

    CAS  Article  PubMed  Google Scholar 

  61. Wäckers FL, Bezemer TM (2003) Root herbivory induces an indirect aboveground defense. Ecol Lett 1:9–12

    Article  Google Scholar 

  62. Watts SM, Dodson CD, Reichman OJ (2011) The roots of defense: plant resistance and tolerance to belowground herbivory. PLoS One 6:1–8

    Article  Google Scholar 

  63. Weissteiner S, Huetteroth W, Kollmann M et al (2012) Cockchafer larvae smell host root scents in soil. PLoS One 7:1–12

    Article  Google Scholar 

  64. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

    Google Scholar 

  65. Zvereva EL, Kozlov MV (2012) Sources of variation in plant responses to belowground insect herbivory: a meta-analysis. Oecologia 169:441–452

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Gabriel Ulrich, Viona Ernst and Miguel Salinas for their help with the performance experiments. Maxime Hervé and Marc Pfander provided helpful advice for data analysis and experimental design. This study was supported by the Swiss National Science Foundation (Grant No. 153517), the Seventh Framework Programme for Research and Technological Development of the European Union (FP7 MC-CIG 629134) and by the Transnational Access program of the European Plant Phenotyping Network (EPPN) funded by the European Union under the FP7 Capacities Programme (Grant Agreement No. 284443). The Hounsfield Facility received funding from ERC (FUTUREROOTS; Brussels, Belgium), BBSRC (Swindon, UK), and The Wolfson Foundation (London, UK).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matthias Erb.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bont, Z., Arce, C., Huber, M. et al. A Herbivore Tag-and-Trace System Reveals Contact- and Density-Dependent Repellence of a Root Toxin. J Chem Ecol 43, 295–306 (2017). https://doi.org/10.1007/s10886-017-0830-3

Download citation

Keywords

  • Root herbivore
  • Foraging
  • Tag-and-trace
  • Imaging
  • Melolontha melolontha
  • Taraxacum officinale