Journal of Chemical Ecology

, Volume 43, Issue 3, pp 295–306 | Cite as

A Herbivore Tag-and-Trace System Reveals Contact- and Density-Dependent Repellence of a Root Toxin

  • Zoe Bont
  • Carla Arce
  • Meret Huber
  • Wei Huang
  • Adrien Mestrot
  • Craig J. Sturrock
  • Matthias Erb
Article

Abstract

Foraging behavior of root feeding organisms strongly affects plant-environment-interactions and ecosystem processes. However, the impact of plant chemistry on root herbivore movement in the soil is poorly understood. Here, we apply a simple technique to trace the movement of soil-dwelling insects in their habitats without disturbing or restricting their interactions with host plants. We tagged the root feeding larvae of Melolontha melolontha with a copper ring and repeatedly located their position in relation to their preferred host plant, Taraxacum officinale, using a commercial metal detector. This method was validated and used to study the influence of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) on the foraging of M. melolontha. TA-G is stored in the latex of T. officinale and protects the roots from herbivory. Using behavioral arenas with TA-G deficient and control plants, we tested the impact of physical root access and plant distance on the effect of TA-G on M. melolontha. The larvae preferred TA-G deficient plants to control plants, but only when physical root contact was possible and the plants were separated by 5 cm. Melolontha melolontha showed no preference for TA-G deficient plants when the plants were grown 15 cm apart, which may indicate a trade-off between the cost of movement and the benefit of consuming less toxic food. We demonstrate that M. melolontha integrates host plant quality and distance into its foraging patterns and suggest that plant chemistry affects root herbivore behavior in a plant-density dependent manner.

Keywords

Root herbivore Foraging Tag-and-trace Imaging Melolontha melolontha Taraxacum officinale 

References

  1. Agrawal AA, Konno K (2009) Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu Rev Ecol Evol Syst 40:311–331CrossRefGoogle Scholar
  2. Barnett K, Johnson SN (2013) Living in the soil matrix: abiotic factors affecting root herbivores. In: Johnson SN, Hiltpold I, Turlings TCJ (eds) Advances in insect physiology, San Diego: Elsevier Academic Press Inc, pp 1–52Google Scholar
  3. Bates D, Maechler M, Bolker BM, Walker S (2015) Fitting linear mixed-effects models using {lme4}. J Stat Softw 67:1–48CrossRefGoogle Scholar
  4. Bernklau EJ, Bjostad LB (2008) Identification of feeding stimulants in corn roots for western corn rootworm (Coleoptera: Chrysomelidae) larvae. J Econ Entomol 101:341–351CrossRefPubMedGoogle Scholar
  5. Charnov EL (1976) Optimal foraging, the marginal value theorem. Theor Popul Biol 136:129–136CrossRefGoogle Scholar
  6. Core Team R (2016) R: a language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria, In http://www.r-project.org/ Google Scholar
  7. van Dam NM (2009) Belowground herbivory and plant defenses. Annu Rev Ecol Evol Syst 40:373–391CrossRefGoogle Scholar
  8. van Dam NM, Bouwmeester HJ (2016) Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci 21:256–265CrossRefPubMedGoogle Scholar
  9. Dawson LA, Grayston SJ, Murray PJ, Pratt SM (2002) Root feeding behavior of Tipula paludosa (Meig.) (Diptera: Tipulidae) on Lolium perenne (L.) and Trifolium repens (L.) Soil Biol Biochem 34:609–615CrossRefGoogle Scholar
  10. Duggan RE, Miller RJ (2001) External and internal tags for the green sea urchin. J Exp Mar Biol Ecol 258:115–122CrossRefPubMedGoogle Scholar
  11. Eilers EJ, Talarico G, Hansson BS et al (2012) Sensing the underground - ultrastructure and function of sensory organs in root-feeding Melolontha melolontha (Coleoptera: Scarabaeinae) larvae. PLoS One 7:e41357CrossRefPubMedPubMedCentralGoogle Scholar
  12. Eilers EJ, Veit D, Rillig MC et al (2016) Soil substrates affect responses of root feeding larvae to their hosts at multiple levels: orientation, locomotion and feeding. Basic Appl Ecol 17:115–124CrossRefGoogle Scholar
  13. Erb M, Ton J, Degenhardt J, Turlings TCJ (2008) Interactions between arthropod-induced aboveground and belowground defenses in plants. Plant Physiol 146:867–874CrossRefPubMedPubMedCentralGoogle Scholar
  14. Erb M, Huber M, Robert CAM et al (2013) The role of plant primary and secondary metabolites in root-herbivore behavior, nutrition and physiology. In: Johnson SN, Hiltpold I, Turlings TCJ (eds) Advances in insect physiology, San Diego: Elsevier Academic Press Inc, p 53–95Google Scholar
  15. Erb M, Robert CAM, Marti G et al (2015) A physiological and behavioral mechanism for leaf-herbivore induced systemic root resistance. Plant Physiol 169:2884–2894PubMedPubMedCentralGoogle Scholar
  16. Farrell BD, Dussourd DE, Mitter C (1991) Escalation of plant defense: do latex and resin canals spur plant diversification? Am Nat 138:881–900CrossRefGoogle Scholar
  17. Fox J, Weisberg S (2011) An {R} companion to applied regression, 2nd edn. Sage, Thousand Oaks CAGoogle Scholar
  18. Gerard PJ, Crush JR, Hackell DL (2005) Interaction between Sitona lepidus and red clover lines selected for formononetin content. Ann Appl Biol 147:173–181CrossRefGoogle Scholar
  19. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  20. Hauss R (1975) Methoden und erste Ergebnisse zur Bestimmung der Wirtspflanzen des Maikäferengerlings (Melolontha melolontha L.) Mitteilungen aus der Biol Bundesanstalt für Land- und Forstwirtschaft Berlin Dahlen 163:72–77Google Scholar
  21. Hauss R, Schütte F (1976) Zur Polyphagie der Engerlinge von Melolontha melolontha L. an Pflanzen aus Wiese und Ödland. Anzeiger für Schädlingskd 49:129–132CrossRefGoogle Scholar
  22. Huber M, Triebwasser-Freese D, Reichelt M et al (2015) Identification, quantification, spatiotemporal distribution and genetic variation of major latex secondary metabolites in the common dandelion (Taraxacum officinale agg.) Phytochemistry 115:89–98CrossRefPubMedGoogle Scholar
  23. Huber M, Bont Z, Fricke J et al (2016a) A below-ground herbivore shapes root defensive chemistry in natural plant populations. Proc R Soc B-Biol Sci 283:20160285CrossRefGoogle Scholar
  24. Huber M, Epping J, Schulze Gronover C et al (2016b) A latex metabolite benefits plant fitness under root herbivore attack. PLoS Biol 14:1–27CrossRefGoogle Scholar
  25. Hunter MD (2001) Out of sight, out of mind: the impacts of root-feeding insects in matural managed systems. Agric For Entomol 3:3–9CrossRefGoogle Scholar
  26. Johnson SN, Gregory PJ (2006) Chemically-mediated host-plant location and selection by root-feeding insects. Physiol Entomol 31:1–13CrossRefGoogle Scholar
  27. Johnson SN, Nielsen UN (2012) Foraging in the dark - chemically mediated host plant location by belowground insect herbivores. J Chem Ecol 38:604–614CrossRefPubMedGoogle Scholar
  28. Johnson SN, Read DB, Gregory PJ (2004) Tracking larval insect movement within soil using high resolution X-ray microtomography. Ecol Entomol 29:117–122CrossRefGoogle Scholar
  29. Johnson SN, Crawford JW, Gregory PJ et al (2007) Non-invasive techniques for investigating and modelling root-feeding insects in managed and natural systems. Agric For Entomol 9:39–46CrossRefGoogle Scholar
  30. Johnson SN, Erb M, Hartley SE (2016) Roots under attack: contrasting plant responses to below- and aboveground insect herbivory. New Phytol 210:413–418CrossRefPubMedGoogle Scholar
  31. Lenth RV (2016) Least-squares means: the {R} package {lsmeans}. J Stat Softw 69:1–33CrossRefGoogle Scholar
  32. Lihoreau M, Chittka L, Raine NE (2011) Trade-off between travel distance and prioritization of high-reward sites in traplining bumblebees. Funct Ecol 25:1284–1292CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liu XF, Chen HH, Li JK et al (2016) Volatiles released by Chinese liquorice roots mediate host location behavior by neonate Porphyrophora sophorae (Hemiptera: Margarodidae). Pest Manag Sci 72:1959–1964CrossRefPubMedGoogle Scholar
  34. Luna F, Antinuchi CD (2006) Cost of foraging in the subterranean rodent Ctenomys talarum: effect of soil hardness. Can J Zool 84:661–667CrossRefGoogle Scholar
  35. Mankin RW, Brandhorst-Hubbard J, Flanders KL et al (2000) Eavesdropping on insects hidden in soil and interior structures of plants. J Econ Entomol 93:1173–1182CrossRefPubMedGoogle Scholar
  36. Metcalfe CR (1967) Distribution of latex in the plant kingdom. Econ Bot 21:115–127CrossRefGoogle Scholar
  37. Mochizuki A, Ishikawa Y, Matsumoto Y (1985) Sugars as phagostimulants for larvae of the onion fly, Hylemya antiqua Meigen (Diptera: Anthomyiidae). Appl Entomol Zool 20:465–469Google Scholar
  38. Murray PJ, Gregory PJ, Granger SJ et al (2010) Dispersal of soil-dwelling clover root weevil (Sitona lepidus Gyllenhal, Coleoptera: Curculionidae) larvae in mixed plant communities. Appl Soil Ecol 46:422–425CrossRefGoogle Scholar
  39. Nathan R, Getz WM, Revilla E et al (2008) A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci U S A 105:19052–19059CrossRefPubMedPubMedCentralGoogle Scholar
  40. Nordenhem H, Nordlander G (1994) Olfactory oriented migration through soil by root-living Hylobius abietis (L.) larvae (Col., Curculionidae). J Appl Entomol 117:457–462CrossRefGoogle Scholar
  41. Perissinotti PP, Antenucci CD, Zenuto R, Luna F (2009) Effect of diet quality and soil hardness on metabolic rate in the subterranean rodent Ctenomys talarum. Comp Biochem Phys A 154:298–307CrossRefGoogle Scholar
  42. Piper RW, Compton SG (2002) A novel technique for relocating concealed insects. Ecol Entomol 27:251–253CrossRefGoogle Scholar
  43. Piper RW, Lewis Z, Compton SG (2014) Life in the leaf-litter: a novel metal detector technique to investigate the over-wintering survival of rare, case-bearing beetle larvae. J Insect Conserv 18:1163–1169CrossRefGoogle Scholar
  44. Popham HJR, Shelby KS, Brandt SL, Coudron TA (2004) Potent virucidal activity in larval Heliothis virescens plasma against Helicoverpa zea single capsid nucleopolyhedrovirus. J Gen Virol 85:2255–2261CrossRefPubMedGoogle Scholar
  45. van der Putten WH (2003) Plant defence belowground and spatiotemporal processes. Ecology 84:2269–2280CrossRefGoogle Scholar
  46. Pyke GH (1984) Optimal foraging theory: a critical review. Annu Rev Ecol Syst 15:523–575CrossRefGoogle Scholar
  47. Rasmann S, Köllner TG, Degenhardt J et al (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737CrossRefPubMedGoogle Scholar
  48. Reinecke A, Müller F, Hilker M (2008) Attractiveness of CO2 released by root respiration fades on the background of root exudates. Basic Appl Ecol 9:568–576CrossRefGoogle Scholar
  49. Robert CAM, Erb M, Duployer M et al (2012a) Herbivore-induced plant volatiles mediate host selection by a root herbivore. New Phytol 194:1061–1069CrossRefPubMedGoogle Scholar
  50. Robert CAM, Veyrat N, Glauser G et al (2012b) A specialist root herbivore exploits defensive metabolites to locate nutritious tissues. Ecol Lett 15:55–64CrossRefPubMedGoogle Scholar
  51. Schmelz EA, Grebenok RJ, Ohnmeiss TE, Bowers WS (2002) Interactions between Spinacia oleracea and Bradysia impatiens: a role for phytoecdysteroids. Arch Insect Biochem Physiol 51:204–221CrossRefPubMedGoogle Scholar
  52. Schumann M, Vidal S (2012) Dispersal and spatial distribution of western corn rootworm larvae in relation to root phenology. Agric For Entomol 14:331–339CrossRefGoogle Scholar
  53. Schumann M, Patel A, Vidal S (2013) Evaluation of an attract and kill strategy for western corn rootworm larvae. J Pest Sci (2004) 87:259–271Google Scholar
  54. Soler R, Bezemer TM, Van Der Putten WH et al (2005) Root herbivore effects on above-ground herbivore, parasitoid and hyperparasitoid performance via changes in plant quality. J Anim Ecol 74:1121–1130CrossRefGoogle Scholar
  55. Sonnemann I, Grunz S, Wurst S (2014) Horizontal migration of click beetle (Agriotes spp.) larvae depends on food availability. Entomol Exp Appl 150:174–178CrossRefGoogle Scholar
  56. Sutherland ORW, Hillier JR (1974) Feeding behavior of the grass grub Costelytra zealandica (white) (Coleoptera: Melolonthinae). New Zeal J Zool 1:211–216CrossRefGoogle Scholar
  57. Sutherland ORW, Hillier JR (1976) The influence of maltose and other carbohydrates on the feeding behavior of Heteronychus arator (Scarabaeidae: Coleoptera). Experientia 32:701–702CrossRefGoogle Scholar
  58. Sutherland ORW, Russell GB, Biggs DR, Lane GA (1980) Insect feeding deterrent activity of phytoalexin isoflavonoids. Biochem Syst Ecol 8:73–75CrossRefGoogle Scholar
  59. van Tol RWHM, van der Sommen ATC, Boff MIC et al (2001) Plants protect their roots by alerting the enemies of grubs. Ecol Lett 4:292–294CrossRefGoogle Scholar
  60. Verhoeven KJF, Van Dijk PJ, Biere A (2010) Changes in genomic methylation patterns during the formation of triploid asexual dandelion lineages. Mol Ecol 19:315–324CrossRefPubMedGoogle Scholar
  61. Wäckers FL, Bezemer TM (2003) Root herbivory induces an indirect aboveground defense. Ecol Lett 1:9–12CrossRefGoogle Scholar
  62. Watts SM, Dodson CD, Reichman OJ (2011) The roots of defense: plant resistance and tolerance to belowground herbivory. PLoS One 6:1–8CrossRefGoogle Scholar
  63. Weissteiner S, Huetteroth W, Kollmann M et al (2012) Cockchafer larvae smell host root scents in soil. PLoS One 7:1–12CrossRefGoogle Scholar
  64. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer-Verlag, New YorkCrossRefGoogle Scholar
  65. Zvereva EL, Kozlov MV (2012) Sources of variation in plant responses to belowground insect herbivory: a meta-analysis. Oecologia 169:441–452CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Zoe Bont
    • 1
  • Carla Arce
    • 1
  • Meret Huber
    • 2
  • Wei Huang
    • 1
  • Adrien Mestrot
    • 3
  • Craig J. Sturrock
    • 4
  • Matthias Erb
    • 1
  1. 1.Institute of Plant SciencesUniversity of BernBernSwitzerland
  2. 2.Department of BiochemistryMax-Planck Institute for Chemical EcologyJenaGermany
  3. 3.Institute of GeographyUniversity of BernBernSwitzerland
  4. 4.Centre for Plant Integrative Biology, School of BiosciencesUniversity of NottinghamLeicestershireUK

Personalised recommendations