Journal of Chemical Ecology

, Volume 42, Issue 6, pp 537–551 | Cite as

Ant and Mite Diversity Drives Toxin Variation in the Little Devil Poison Frog

  • Jenna R. McGugan
  • Gary D. Byrd
  • Alexandre B. Roland
  • Stephanie N. Caty
  • Nisha Kabir
  • Elicio E. Tapia
  • Sunia A. Trauger
  • Luis A. Coloma
  • Lauren A. O’Connell
Article

Abstract

Poison frogs sequester chemical defenses from arthropod prey, although the details of how arthropod diversity contributes to variation in poison frog toxins remains unclear. We characterized skin alkaloid profiles in the Little Devil poison frog, Oophaga sylvatica (Dendrobatidae), across three populations in northwestern Ecuador. Using gas chromatography/mass spectrometry, we identified histrionicotoxins, 3,5- and 5,8-disubstituted indolizidines, decahydroquinolines, and lehmizidines as the primary alkaloid toxins in these O. sylvatica populations. Frog skin alkaloid composition varied along a geographical gradient following population distribution in a principal component analysis. We also characterized diversity in arthropods isolated from frog stomach contents and confirmed that O. sylvatica specialize on ants and mites. To test the hypothesis that poison frog toxin variability reflects species and chemical diversity in arthropod prey, we (1) used sequencing of cytochrome oxidase 1 to identify individual prey specimens, and (2) used liquid chromatography/mass spectrometry to chemically profile consumed ants and mites. We identified 45 ants and 9 mites in frog stomachs, including several undescribed species. We also showed that chemical profiles of consumed ants and mites cluster by frog population, suggesting different frog populations have access to chemically distinct prey. Finally, by comparing chemical profiles of frog skin and isolated prey items, we traced the arthropod source of four poison frog alkaloids, including 3,5- and 5,8-disubstituted indolizidines and a lehmizidine alkaloid. Together, the data show that toxin variability in O. sylvatica reflects chemical diversity in arthropod prey.

Keywords

Poison frog Alkaloid Toxin Ant Mite Mass spectrometry Dendrobatidae 

Supplementary material

10886_2016_715_MOESM1_ESM.docx (4.6 mb)
ESM 1(DOCX 4665 kb)

References

  1. Caldwell JP (1996) The evolution of myrmecophagy and its correlates in poison frogs (family Dendrobatidae). J Zool 240:75–101CrossRefGoogle Scholar
  2. Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG (2013) Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol 28:219–229CrossRefPubMedGoogle Scholar
  3. Daly JW (1995) The chemistry of poisons in amphibian skin. Proc Natl Acad Sci U S A 92:9–13CrossRefPubMedPubMedCentralGoogle Scholar
  4. Daly JW, Spande TF (1986) Amphibian alkaloids: chemistry, pharmacology and biology. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives, vol 4. Wiley, New York, pp. 1–274Google Scholar
  5. Daly JW, Brown GB, Mensah-Dwumah M, Myers CW (1978) Classification of skin alkaloids from neotropical poison-dart frogs (Dendrobatidae). Toxicon 16:163–188CrossRefPubMedGoogle Scholar
  6. Daly JW, Garraffo HM, Spande TF, Jaramillo C, Rand AS (1994a) Dietary source for skin alkaloids of poison frogs (Dendrobatidae)? J Chem Ecol 20:943–955CrossRefPubMedGoogle Scholar
  7. Daly JW, Secunda SI, Garraffo HM, Spande TF, Wisnieski A, Cover Jr JF (1994b) An uptake system for dietary alkaloids in poison frogs (Dendrobatidae) Toxicon 32:657–663Google Scholar
  8. Daly JW, Garraffo HM, Jain P, Spande TF, Snelling RR, Jaramillo C, Rand AS (2000) Arthropod–frog connection: Decahydroquinoline and pyrrolizidine alkaloids common to microsympatric myrmicine ants and dendrobatid frogs. J Chem Ecol 26:73–85CrossRefGoogle Scholar
  9. Daly JW, Kaneko T, Wilham J, Garraffo HM, Spande TF, Espinosa A, Donnelly MA (2002) Bioactive alkaloids of frog skin: combinatorial bioprospecting reveals that pumiliotoxins have an arthropod source. Proc Natl Acad Sci U S A 99:13996–14001CrossRefPubMedPubMedCentralGoogle Scholar
  10. Daly JW, Spande TF, Garraffo HM (2005) Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds. J Nat Prod 68:1556–1575CrossRefPubMedGoogle Scholar
  11. Daly J, Wilham J, Spande T, Garraffo H, Gil R, Silva G, Vaira M (2007) Alkaloids in bufonid toads (Melanophryniscus): temporal and geographic determinants for two Argentinian species. J Chem Ecol 33:871–887CrossRefPubMedGoogle Scholar
  12. Daly JW, Garraffo HM, Spande TF, Giddings L-A, Saporito RA, Vieites DR, Vences M (2008) Individual and geographic variation of skin alkaloids in three species of Madagascan poison frogs (Mantella). J Chem Ecol 34:252–279CrossRefPubMedGoogle Scholar
  13. Darst CR, Menéndez-Guerrero PA, Coloma LA, Cannatella DC (2005) Evolution of dietary specialization and chemical defense in poison frogs (Dendrobatidae): a comparative analysis. Am Nat 165:56–69CrossRefPubMedGoogle Scholar
  14. Donnelly MA (1991) Feeding patterns of the strawberry poison frog, Dendrobates pumilio (Anura: Dendrobatidae). Copeia 3:723–730CrossRefGoogle Scholar
  15. Doyle JJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phys Bull 19:11–15Google Scholar
  16. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  17. Franklin E, Hayek T, Fagundes E, Silva L (2004) Oribatid mite (Acari: Oribatida) contribution to decomposition dynamic of leaf litter in primary forest, second growth, and polyculture in the Central Amazon. Braz J Biol 64:59–72CrossRefPubMedGoogle Scholar
  18. Garraffo H, Caceres J, Daly J, Spande T, Andriamaharavo N, Andriantsiferana M (1993) Alkaloids in Madagascan frogs (Mantella): pumiliotoxins, indolizidines, quinolizidines, and pyrrolizidines. J Nat Prod 56:1016–1038CrossRefPubMedGoogle Scholar
  19. Gómez-Hoyos DA, López-García MM, Soto-Garzón CA, Méndez-Rojas DM, Kahn TR, Velasco JA (2014) Geographic variation in the diet of the Cauca poison frog Andinobates bombetes (Anura: Dendrobatidae) in the Andes of Colombia. Herpetol Notes 7:559–564Google Scholar
  20. Hantak MM, Grant T, Reinsch S, Mcginnity D, Loring M, Toyooka N, Saporito RA (2013) Dietary alkaloid sequestration in a poison frog: an experimental test of alkaloid uptake in Melanophryniscus stelzneri (Bufonidae). J Chem Ecol 39:1400–1406CrossRefPubMedGoogle Scholar
  21. Hebert PD, Cywinska A, Ball SL (2003) Biological identifications through DNA barcodes. Proc R Soc B 270:313–321CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hebert PD, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2:e312CrossRefPubMedPubMedCentralGoogle Scholar
  23. Heckel DG (2014) Insect detoxification and sequestration strategies. In: Voelckel C, Jander G (eds) Annu plant reviews: insect-plant interactions, vol 47. Wiley, Chichester, pp. 77–114CrossRefGoogle Scholar
  24. Jeckel AM, Saporito RA, Grant T (2015) The relationship between poison frog chemical defenses and age, body size, and sex. Front Zool 12:27CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jones TH, Gorman JS, Snelling RR, Delabie JH, Blum MS, Garraffo HM, Jain P, Daly JW, Spande TF (1999) Further alkaloids common to ants and frogs: decahydroquinolines and a quinolizidine. J Chem Ecol 25:1179–1193CrossRefGoogle Scholar
  26. Jones TH, Voegtle HL, Miras HM, Weatherford RG, Spande TF, Garraffo HM, Daly JW, Davidson DW, Snelling RR (2007) Venom chemistry of the ant Myrmicaria melanogaster from Brunei. J Nat Prod 70:160–168CrossRefPubMedGoogle Scholar
  27. Jones TH, Adams RM, Spande TF, Garraffo HM, Kaneko T, Schultz TR (2012) Histrionicotoxin alkaloids finally detected in an ant. J Nat Prod 75:1930–1936CrossRefPubMedGoogle Scholar
  28. Kambhampati S, Smith P (1995) PCR primers for the amplification of four insect mitochondrial gene fragments. Insect Mol Biol 4:233–236CrossRefPubMedGoogle Scholar
  29. Mebs D, Alvarez JV, Pogoda W, Toennes SW, Köhler G (2014) Poor alkaloid sequestration by arrow poison frogs of the genus Phyllobates from Costa Rica. Toxicon 80:73–77CrossRefPubMedGoogle Scholar
  30. Meusnier I, Singer GA, Landry J-F, Hickey DA, Hebert PD, Hajibabaei M (2008) A universal DNA mini-barcode for biodiversity analysis. BMC Genomics 9:214CrossRefPubMedPubMedCentralGoogle Scholar
  31. Myers CW, Daly JW (1976) Preliminary evaluation of skin toxins and vocalizations in taxonomic and evolutionary studies of poison-dart frogs (Dendrobatidae). Bull Am Mus Nat Hist 157:173–262Google Scholar
  32. Myers CW, Daly JW, Garraffo HM, Wisnieski A, Cover JF (1995) Discovery of the costa Rican poison frog Dendrobates granuliferus in sympatry with Dendrobates pumilio, and comments on taxonomic use of skin alkaloids. Am Mus Novit 14:1–21Google Scholar
  33. Navajas M, Lagnel J, Gutierrez J, Boursot P (1998) Species-wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity 80:742–752CrossRefPubMedGoogle Scholar
  34. Neuwirth M, Daly JW, Myers CW, Tice LW (1979) Morphology of the granular secretory glands in skin of poison-dart frogs (Dendrobatidae). Tissue Cell 11:755–771CrossRefPubMedGoogle Scholar
  35. Olivera BM et al. (1985) Peptide neurotoxins from fish-hunting cone snails. Science 230:1338–1343CrossRefPubMedGoogle Scholar
  36. Opitz SE, Müller C (2009) Plant chemistry and insect sequestration. Chemoecology 19:117–154CrossRefGoogle Scholar
  37. Osorio D, Valenzuel L, Bermudez-Rivas C, Castaño S (2015) Descripción de la dieta de una población de Oophaga histrionica (Athesphatanura: Dendrobatidae) en un enclave seco del Valle del Cauca, Colombia. Rev Biodiv Neotrop 5:29–35CrossRefGoogle Scholar
  38. Rodríguez A, Poth D, Schulz S, Vences M (2011) Discovery of skin alkaloids in a miniaturized eleutherodactylid frog from Cuba. Biol Lett 7:414–418CrossRefPubMedGoogle Scholar
  39. Santos JC, Coloma LA, Cannatella DC (2003) Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proc Natl Acad Sci U S A 100:12792–12797CrossRefPubMedPubMedCentralGoogle Scholar
  40. Santos JC, Tarvin RD, O'Connell LA (2015) A review of chemical defense in poison frogs (Dendrobatidae): Ecology, pharmacokinetics and autoresistance. In: Chemical Signals in Vertebrates 13. Springer International Publishing, pp 305–337Google Scholar
  41. Saporito RA, Garraffo HM, Donnelly MA, Edwards AL, Longino JT, Daly JW (2004) Formicine ants: An arthropod source for the pumiliotoxin alkaloids of dendrobatid poison frogs. Proc Natl Acad Sci USA 101:8045–8050CrossRefPubMedPubMedCentralGoogle Scholar
  42. Saporito RA, Donnelly MA, Garraffo HM, Spande TF, Daly JW (2006) Geographic and seasonal variation in alkaloid-based chemical defenses of Dendrobates pumilio from Bocas del Toro, Panama. J Chem Ecol 32:795–814CrossRefPubMedGoogle Scholar
  43. Saporito RA, Donnelly MA, Jain P, Garraffo HM, Spande TF, Daly JW (2007a) Spatial and temporal patterns of alkaloid variation in the poison frog Oophaga pumilio in Costa Rica and Panama over 30 years. Toxicon 50:757–778CrossRefPubMedGoogle Scholar
  44. Saporito RA, Donnelly MA, Norton RA, Garraffo HM, Spande TF, Daly JW (2007b) Oribatid mites as a major dietary source for alkaloids in poison frogs. Proc Natl Acad Sci U S A 104:8885–8890CrossRefPubMedPubMedCentralGoogle Scholar
  45. Saporito RA, Spande TF, Garraffo HM, Donnelly MA (2009) Arthropod alkaloids in poison frogs: a review of the dietary hypothesis. Heterocycles 79:277–297CrossRefGoogle Scholar
  46. Saporito RA, Donnelly MA, Madden AA, Garraffo HM, Spande TF (2010) Sex-related differences in alkaloid chemical defenses of the Dendrobatid frog Oophaga pumilio from Cayo Nancy, Bocas del Toro, Panama. J Nat Prod 73:317–321CrossRefPubMedPubMedCentralGoogle Scholar
  47. Saporito RA, Norton RA, Andriamaharavo NR, Garraffo HM, Spande TF (2011) Alkaloids in the mite Scheloribates laevigatus: further alkaloids common to oribatid mites and poison frogs. J Chem Ecol 37:213–218CrossRefPubMedGoogle Scholar
  48. Saporito RA, Donnelly MA, Spande TF, Garraffo HM (2012) A review of chemical ecology in poison frogs. Chemoecology 22:159–168CrossRefGoogle Scholar
  49. Saporito RA, Norton RA, Garraffo MH, Spande TF (2015) Taxonomic distribution of defensive alkaloids in Nearctic oribatid mites (Acari, Oribatida). Exp Appl Acarol 67:317–333CrossRefPubMedGoogle Scholar
  50. Smith MA, Fisher BL, Hebert PD (2005) DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philos T Roy Soc B 360:1825–1834CrossRefGoogle Scholar
  51. Stuckert AM, Saporito RA, Venegas PJ, Summers K (2014) Alkaloid defenses of co-mimics in a putative Müllerian mimetic radiation. BMC Evol Biol 14:76CrossRefPubMedPubMedCentralGoogle Scholar
  52. Takada W, Sakata T, Shimano S, Enami Y, Mori N, Nishida R, Kuwahara Y (2005) Scheloribatid mites as the source of pumiliotoxins in Dendrobatid frogs. J Chem Ecol 31:2403–2415CrossRefPubMedGoogle Scholar
  53. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G (2012) XCMS online: a web-based platform to process untargeted metabolomic data. Anal Chem 84:5035–5039CrossRefPubMedPubMedCentralGoogle Scholar
  55. Toft CA (1980) Feeding ecology of thirteen syntopic species of anurans in a seasonal tropical environment. Oecologia 45:131–141CrossRefGoogle Scholar
  56. Wilson E (2005) Oribatid mite predation by small ants of the genus Pheidole. Insect Soc 52:263–265CrossRefGoogle Scholar
  57. Young MR, Behan-Pelletier VM, Hebert PD (2012) Revealing the hyperdiverse mite fauna of subarctic Canada through DNA barcoding. PLoS One 7:e48755CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jenna R. McGugan
    • 1
  • Gary D. Byrd
    • 2
  • Alexandre B. Roland
    • 1
  • Stephanie N. Caty
    • 1
  • Nisha Kabir
    • 3
  • Elicio E. Tapia
    • 4
  • Sunia A. Trauger
    • 2
  • Luis A. Coloma
    • 4
    • 5
  • Lauren A. O’Connell
    • 1
  1. 1.Center for Systems BiologyHarvard UniversityCambridgeUSA
  2. 2.Small Molecule Mass Spectrometry FacilityHarvard UniversityCambridgeUSA
  3. 3.Cambridge Rindge and Latin High SchoolCambridgeUSA
  4. 4.Centro Jambatu de Investigación y Conservación de AnfibiosFundación OtongaQuitoEcuador
  5. 5.Ikiam, Universidad Regional AmazónicaMuyunaEcuador

Personalised recommendations