Differential Sharing of Chemical Cues by Social Parasites Versus Social Mutualists in a Three-Species Symbiosis

Abstract

Chemical recognition systems are crucial for maintaining the unity of social insect colonies. It has been proposed that colonies form a common chemical signature, called the gestalt odor, which is used to distinguish colony members and non-members. This chemical integration is achieved actively through social interactions such as trophallaxis and allogrooming, or passively such as through exposure to common nest material. When colonies are infiltrated by social parasites, the intruders often use some form of chemical mimicry. However, it is not always clear how this chemical mimicry is accomplished. Here, we used a three-species nesting symbiosis to test the differences in chemical integration of mutualistic (parabiotic) and parasitic ant species. We found that the parasite (Solenopsis picea) obtains chemical cues from both of the two parabiotic host ant species. However, the two parabiotic species (Crematogaster levior and Camponotus femoratus) maintain species-specific cues, and do not acquire compounds from the other species. Our findings suggest that there is a fundamental difference in how social mutualists and social parasites use chemicals to integrate themselves into colonies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Akino T, Tsuneoka Y (2012) Chemical camouflage of the slave-making ant Polyergus samurai queen in the process of the host colony usurpation (Hymenoptera: Formicidae). Chemoecology 22:89–99

    Article  Google Scholar 

  2. Bauer S, Böhm M, Witte V, Foitzik S (2009) An ant social parasite in-between two chemical disparate host species. Evol Ecol 24:317–332

    Article  Google Scholar 

  3. Beye M, Neumann P, Moritz R (1997) Nestmate recognition and the genetic gestalt in the mound-building ant Formica polyctena. Insect Soc 44:49–58

    Article  Google Scholar 

  4. Bos N, D’Ettorre P (2012) Recognition of social identity in ants. Front Psychol 3:1–6

    Article  Google Scholar 

  5. Bos N, Grinsted L, Holman L (2011) Wax on, wax off: nest soil facilitates indirect transfer of recognition cues between ant nestmates. PLoS One 6, e19435

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Brandt M, Foitzik S, Fischer-Blass B (2005) The coevolutionary dynamics of obligate ant social parasite systems – between prudence and antagonism. Biol Rev 80:251–267

    Article  PubMed  Google Scholar 

  7. Brandt M, van Wilgenburg E, Sulc R (2009) The scent of supercolonies: the discovery, synthesis and behavioural verification of ant colony recognition cues. BMC Biol 7:71–80

    Article  PubMed  PubMed Central  Google Scholar 

  8. Breed MD, Butler L, Stiller TM (1985) Kin discrimination by worker honey bees in genetically mixed groups. Proc Natl Acad Sci U S A 82:3058–3061

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Buschinger A (2009) Social parasitism among ants: a review (Hymenoptera: Formicidae). Myrmecol News 12:219–235

    Google Scholar 

  10. Carlin NF, Hölldobler B (1983) Nestmate and kin recognition in interspecific mixed colonies of ants. Science 222:1027–1029

    CAS  Article  PubMed  Google Scholar 

  11. Davidson DW (2005) Ecological stoichiometry of ants in a New World rain forest. Oecologia 142:221–231

  12. D’Ettorre P, Mondy N (2002) Blending in with the crowd: social parasites integrate into their host colonies using a flexible chemical signature. Proc R Soc B: Biol Sci 269:1911–1918

    Article  Google Scholar 

  13. D’Ettorre P, Brunner E, Wenseleers T, Heinze J (2004) Knowing your enemies: seasonal dynamics of host–social parasite recognition. Naturwissenschaften 91:594–597

    Article  PubMed  Google Scholar 

  14. Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930

    Article  Google Scholar 

  15. Drescher J, Blüthgen N, Schmitt T, Bühler J, Feldhaar H (2010) Societies drifting apart? Behavioural, genetic and chemical differentiation between supercolonies in the yellow crazy ant Anoplolepis gracilipes. PLoS One 5, e13581

    Article  PubMed  PubMed Central  Google Scholar 

  16. Emery VJ, Tsutsui ND (2013) Recognition in a social symbiosis: chemical phenotypes and nestmate recognition behaviors of Neotropical parabiotic ants. PLoS One 8, e56492

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Errard C, Hefetz A (1997) Label familiarity and discriminatory ability of ants reared in mixed groups. Insect Soc 44:189–198

    Article  Google Scholar 

  18. Errard C, Hefetz A, Jaisson P (2005) Social discrimination tuning in ants: template formation and chemical similarity. Behav Ecol Sociobiol 59:353–363

    Article  Google Scholar 

  19. Fürst MA, Durey M, Nash DR (2012) Testing the adjustable threshold model for intruder recognition on Myrmica ants in the context of a social parasite. Proc R Soc Lond B 279:516–522

    Article  Google Scholar 

  20. Gibbs AG (2002) Lipid melting and cuticular permeability: new insights into an old problem. J Insect Physiol 48:391–400

    CAS  Article  PubMed  Google Scholar 

  21. Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Software 22:1–19

    Article  Google Scholar 

  22. Guillem RM, Drijfhout F, Martin SJ (2014) Chemical deception among ant social parasites. Curr Zool 60:62–75

    Article  Google Scholar 

  23. Hoffmann F, Separation E, Modified W, Hefetz A, Errard C, Cojocaru M (1992) Heterospecific substances in the postpharyngeal gland secretion of ants reared in mixed groups. Naturwissenschaften 79:417–420

    Article  Google Scholar 

  24. Huang MH, Dornhaus A (2008) A meta-analysis of ant social parasitism: host characteristics of different parasitism types and a test of Emery’s rule. Ecol Entomol 33:589–596

  25. Katritzky AR, Chen K, Maran U, Carlson DA (2000) QSPR correlation and predictions of GC retention indexes for methyl-branched hydrocarbons produced by insects. Anal Chem 72:101–109

    CAS  Article  PubMed  Google Scholar 

  26. Lehmann L, Perrin N (2002) Altruism, dispersal, and phenotype-matching kin recognition. Am Nat 159:451–468

    Article  PubMed  Google Scholar 

  27. Lenoir A, Malosse C, Yamaoka R (1997) Chemical mimicry between parasitic ants of the genus Formicoxenus and their host Myrmica (Hymenoptera: Formicidae). Biochem Syst Ecol 25:379–389

    CAS  Article  Google Scholar 

  28. Lenoir A, Ettorre PD, Errard C, D’Ettorre P, Hefetz A (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:573–599

    CAS  Article  PubMed  Google Scholar 

  29. Longino J (2003) The Crematogaster (Hymenoptera, Formicidae, Myrmicinae) of Costa Rica. Zootaxa 150:1–150

    Google Scholar 

  30. Lorenzi MC, Bagnères AG (2002) Concealing identity and mimicking hosts: a dual chemical strategy for a single social parasite? (Polistes atrimandibularis, Hymenoptera: Vespidae). Parasitology 125:507–512

    CAS  Article  PubMed  Google Scholar 

  31. Mann WM (1912) Parabiosis in Brazilian ants. Psyche J Entomol 19:36–41

    Article  Google Scholar 

  32. Martin S, Drijfhout F (2009) A review of ant cuticular hydrocarbons. J Chem Ecol 35:1151–1161

    CAS  Article  PubMed  Google Scholar 

  33. Martin SSJ, Helanterä H, Drijfhout FP (2008) Evolution of species-specific cuticular hydrocarbon patterns in Formica ants. Biol J Linn Soc 95:131–140

    Article  Google Scholar 

  34. Martin SJ, Shemilt S, Drijfhout FP (2012) Effect of time on colony odour stability in the ant Formica exsecta. Naturwissenschaften 99:327–331

  35. Mateo JM (2002) Kin-recognition abilities and nepotism as a function of sociality. Proc R Soc Lond B 269:721–727

    Article  Google Scholar 

  36. Mateo JM, Holmes WG (2004) Cross-fostering as a means to study kin recognition. Anim Behav 68:1451–1459

    Article  Google Scholar 

  37. Menzel F, Blüthgen N (2010) Parabiotic associations between tropical ants: equal partnership or parasitic exploitation? J Anim Ecol 79:71–81

    CAS  Article  PubMed  Google Scholar 

  38. Menzel F, Schmitt T (2011) Tolerance requires the right smell: first evidence for interspecific selection on chemical recognition cues. Evolution 66:869–904

  39. Menzel F, Schmitt T (2012) Tolerance requires the right smell: first evidence for interspecific selection on chemical recognition cues. Evolution 66:896–904

    Article  PubMed  Google Scholar 

  40. Menzel F, Linsenmair KE, Blüthgen N (2008) Selective interspecific tolerance in tropical CrematogasterCamponotus associations. Anim Behav 75:837–846

    Article  Google Scholar 

  41. Menzel F, Schmitt T, Blüthgen N (2009) Intraspecific nestmate recognition in two parabiotic ant species: acquired recognition cues and low inter-colony discrimination. Insect Soc 56:251–260

    Article  Google Scholar 

  42. Orivel J, Errard C, Dejean A (1997) Ant gardens : interspecific in parabiotic ant species recognition. Behav Ecol Sociobiol 40:87–93

    Article  Google Scholar 

  43. Pacheco JA (2007) The new world thief ants of the genus Solenopsis (Hymenoptera: Formicidae). Dissertation. University of Texas, El Paso, USA

  44. R Development Core Team R (2011) R: a language and environment for statistical computing. R J

  45. Richard F-J, Hunt JH (2013) Intracolony chemical communication in social insects. Insect Soc 60:275–291

    Article  Google Scholar 

  46. Sheehan MJ, Tibbetts EA (2011) Specialized face learning is associated with individual recognition in paper wasps. Science 334:1272–1275

    CAS  Article  PubMed  Google Scholar 

  47. Sturgis S, Gordon D (2012) Nestmate recognition in ants (Hymenoptera: Formicidae): a review. Myrmecol News 16:101–110

    Google Scholar 

  48. Tibbetts E (2002) Visual signals of individual identity in the wasp Polistes fuscatus. Proc Roy Soc London 269:1423–1428

    Article  Google Scholar 

  49. Tsutsui N (2004) Scents of self: the expression component of self/non-self recognition systems. Ann Zool Fenn: 713–727

  50. Turillazzi S, Sledge MF, Dani FR, Cervo R, Massolo A (2000) Social hackers: integration in the host chemical recognition system by a paper wasp social parasite. Naturwissenschaften 87:172–176

    CAS  Article  PubMed  Google Scholar 

  51. Van Zweden JS, Brask JB, Christensen JH, Boomsma JJ, Linksvayer TA, d’Ettorre P (2010) Blending of heritable recognition cues among ant nestmates creates distinct colony gestalt odours but prevents within-colony nepotism. J Evol Biol 23:1498–1508

    Article  PubMed  Google Scholar 

  52. Vienne C, Soroker V, Hefetz A (1995) Congruency of hydrocarbon patterns in heterospecific groups of ants: transfer and/or biosynthesis? Insect Soc 277:267–277

    Article  Google Scholar 

  53. von Beeren C (2012) Social integration of macroparasites in ant societies: ultimate and proximate mechanisms. Dissertation. LMU Munchen, Germany

  54. Weber N (1943) Parabiosis in neotropical “ant gardens”. Ecology 24:400–404

    Article  Google Scholar 

  55. Wheeler W (1921) A new case of parabiosis and the “ant gardens” of British Guiana. Ecology 59:89–103

    Article  Google Scholar 

Download references

Acknowledgments

We thank Celeste Sandoval and Alain Dejean for help in the field; Jeannot and Odette Morvan at Camp Patawa for lodgings in French Guiana; Stephanie Kung, Judy Chung, Larissa Walder, and Camila Torres for help with lab work. Funding for this research was provided by the American Association for the Advancement of Science Pacific Division Alan E. Leviton Student Research Award, the Society for Integrative and Comparative Biology Fellowship for Graduate Student Travel, the Margaret C. Walker Fund for Teaching and Research in Systematic Entomology, the Johannes Joos Fund, and a Post-Graduate Fellowship from the Natural Sciences and Engineering Research Council of Canada (NSERC) to VJE. This work was also supported by the USDA National Institute of Food and Agriculture, Hatch project CA-B-INS-0087-H. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Neil D. Tsutsui.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Emery, V.J., Tsutsui, N.D. Differential Sharing of Chemical Cues by Social Parasites Versus Social Mutualists in a Three-Species Symbiosis. J Chem Ecol 42, 277–285 (2016). https://doi.org/10.1007/s10886-016-0692-0

Download citation

Keywords

  • Ants
  • Parabiosis
  • Gestalt odor
  • Nestmate recognition
  • Cuticular hydrocarbon
  • Symbiosis
  • Invasive insect