Journal of Chemical Ecology

, Volume 41, Issue 12, pp 1059–1068 | Cite as

Using the Specialization Framework to Determine Degree of Dietary Specialization in a Herbivorous Woodrat

  • Michele M. Skopec
  • Kevin D. Kohl
  • Katharina Schramm
  • James R. Halpert
  • M. Denise Dearing


To be considered a dietary specialist, mammalian herbivores must consume large quantities of a plant species considered “difficult” with respect to nutrient or toxin content, and possess specialized adaptations to deal with plant defensive compounds or low nutritional content. Populations of Neotoma lepida in the Great Basin consume Juniperus osteosperma, a plant heavily defended by terpenes, but a detailed dietary analysis of this population is lacking. Therefore, we investigated the extent of dietary specialization in this species in comparison with the better-studied specialist species, N. stephensi. Microhistological analysis of feces from N. lepida revealed that greater than 90 % of their diet in nature was comprised of juniper. In laboratory tolerance trials, N. lepida tolerated a diet of 80 % J. osteosperma, similar to that observed for N. stephensi. There was no difference in the abilities of N. lepida and N. stephensi to metabolize hexobarbital, a proxy compound for terpene metabolism. In preference tests of native and non-native juniper species, N. lepida did not exhibit a preference for its native or co-occurring juniper, J. osteosperma, over the non-native species, J. monosperma, whereas N. stephensi preferred its native or co-occurring juniper J. monosperma over non-native J. osteosperma. Behavioral and habitat differences between these woodrat species lead to the categorization of N. stephensi as an obligate juniper specialist with a small range that overlaps that of its preferred food, J. monosperma, and N. lepida as a facultative juniper specialist with a large range, and only a portion of its distribution containing populations that feed extensively on J. osteosperma.


Dietary specialization Neotoma Juniper Herbivory 



We thank Andrew Corbin for his adept technical assistance. Support for this research came from NSF (IOS 1256383 and IOS 1461359).


  1. Adams RP (1994) Geographic variation in the volatile terpenoids of Juniperus monosperma and J. osteosperma. Biochem Syst Ecol 22:65–71CrossRefGoogle Scholar
  2. Adams RP, Skopec MM, Kohl KD, Dearing MD (2014) Comparison of volatile leaf terpenoids from Juniperus monosperma and J. osteosperma leaves: intact, ground and exposed to ambient temperature. Phytologia 96:207–217Google Scholar
  3. Anderson JR, Scott CB, Taylor CA, Owens CJ, Jackson JR, Steele DK, Brantley R (2013) Using experience and supplementation to increase juniper consumption by three different breeds of sheep. Rangel Ecol Manag 66:204–208CrossRefGoogle Scholar
  4. Bentacourt JL, Van Devender TR, Martin PS (1990) Packrat middens: the last 40,000 years of biotic change. University of Arizona Press, TusconGoogle Scholar
  5. Brown JH, Lieberman GA, Dengler WF (1972) Woodrats and cholla : dependence of a small mammal population on the density of cacti. Ecology 53:310–313CrossRefGoogle Scholar
  6. Cameron GN, Rainey DG (1972) Habitat utilization by Neotoma lepida in the Mohave desert. J Mammal 53:251–266CrossRefGoogle Scholar
  7. Dearing MD (2013) Temperature-dependent toxicity in mammals with implications for herbivores: a review. J Comp Physiol B Biochem Syst Environ Physiol 183:43–50CrossRefGoogle Scholar
  8. Dearing M, Cork S (1999) Role of detoxification of plant secondary compounds on diet breadth in a mammalian herbivore, Trichosurus vulpecula. J Chem Ecol 25:1205–1219CrossRefGoogle Scholar
  9. Dearing MD, Mangione AM, Karasov WH (2000) Diet breadth of mammalian herbivores: nutrient versus detoxification constraints. Oecologia 123:397–405CrossRefGoogle Scholar
  10. Dearing MD, Mangione AM, Karasov WH (2001) Plant secondary compounds as diuretics: an overlooked consequence. Am Zool 41:890–901Google Scholar
  11. Dearing MD, Mangione AM, Karasov WH (2002) Ingestion of plant secondary compounds causes diuresis in desert herbivores. Oecologia 130:576–584CrossRefGoogle Scholar
  12. Dearing MD, Skopec MM, Bastiani MJ (2006) Detoxification rates of wild herbivorous woodrats (Neotoma). Comp Biochem Physiol A Mol Integr Physiol 145:419–422CrossRefPubMedGoogle Scholar
  13. Dial KP (1988) Three sympatric species of Neotoma: dietary specialization and coexistence. Oecologia 76:531–537CrossRefGoogle Scholar
  14. Estell RE, Utsumi SA, Cibils AF, Anderson DM (2014) Is differential use of Juniperus monosperma by small ruminants driven by terpenoid concentration? J Chem Ecol 40:285–293CrossRefPubMedGoogle Scholar
  15. Falk AA, Hagberg MT, Lot AE, Wigaeus-Hjelm EM, Zhiping W (1990) Uptake, distribution and elimination of α-pinene in man after exposure by inhalation. Scand J Work Environ Health 16:372–378CrossRefPubMedGoogle Scholar
  16. Flinders JT, Hansen RM (1972) Diets and habitats of jackrabbis in northeastern Colorado. Range Sci Dep Sci Ser 12:1–18Google Scholar
  17. Forister ML, Novotny V, Panorska A et al (2015)  The global distribution of diet breadth in insect herbivores. Proc Nat Acad Sci USA 112:442–447Google Scholar
  18. Fox LR, Morrow, PA (1981) Specialization: speceis property or local phenomenon? Science 211:887–893. Google Scholar
  19. Freeland WJ, Janzen DH (1974) Strategies in herbivory by mammals: the role of plant secondary compounds. Am Nat 108:269–289CrossRefGoogle Scholar
  20. Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414CrossRefPubMedGoogle Scholar
  21. Hayes JP (1996) Arborimus longicaudis. Mamm Species 532:1–5CrossRefGoogle Scholar
  22. Karasov WH (1989) Nutritional bottleneck in a herbivore, the desert wood rat (Neotoma lepida). Physiol Zool 62:1351–1382Google Scholar
  23. Kohl KD, Miller AW, Marvin JE, Mackie F, Dearing MD (2014a) Herbivorous rodents (Neotoma spp.) harbour abundant and active foregut microbiota. Environ Microbiol 16:2869–2878CrossRefPubMedGoogle Scholar
  24. Kohl KD, Weiss RB, Cox J, Dale C, Dearing MD (2014b) Gut microbes of mammalian herbivores facilitate intake of plant toxins. Ecol Lett 17:1238–1246CrossRefPubMedGoogle Scholar
  25. Kurnath P, Dearing MD (2013) Warmer ambient temperatures depress liver function in a mammalian herbivore. Biol Lett 9:20130562PubMedCentralCrossRefPubMedGoogle Scholar
  26. Lee ET, Wang J (2003) Statistical methods for survival data analysis. Wiley, HobokenCrossRefGoogle Scholar
  27. MacMillen RE (1964) Population ecology, water relations, and social behavior of a southern California desert rodent fauna. Univ Calif Publ Zool 71:1–66Google Scholar
  28. Magnanou E, Malenke JR, Dearing MD (2009) Expression of biotransformation genes in woodrat (Neotoma) herbivores on novel and ancestral diets: identification of candidate genes responsible for dietary shifts. Mol Ecol 18:2401–2414CrossRefPubMedGoogle Scholar
  29. Malenke JR, Magnanou E, Thomas K, Dearing MD (2012) Cytochrome P450 2B diversity and dietary novelty in the herbivorous, desert woodrat (Neotoma lepida). PLoS One 7:e41510PubMedCentralCrossRefPubMedGoogle Scholar
  30. Malenke JR, Skopec MM, Dearing MD (2014) Evidence for functional convergence in genes upregulated by herbivores ingesting plant secondary compounds. BMC Ecol 14:23PubMedCentralCrossRefPubMedGoogle Scholar
  31. Marsh KJ, Wallis IR, Andrew RL, Foley WJ (2006) The detoxification limitation hypothesis: where did it come from and where is it going? J Chem Ecol 32:1247–1266CrossRefPubMedGoogle Scholar
  32. McEachern MB, Eagles-Smith CA, Efferson CM, Van Vuren DH (2006) Evidence for local specialization in a generalist mammalian herbivore, Neotoma fuscipes. Oikos 113:440–448Google Scholar
  33. Murphy SM, Linhart YB (1999) Comparative morphology of the gastrointestinal tract in the feeding specialist Scirurus aberti and several generalist congeners. J Mammal 80:1325–1330CrossRefGoogle Scholar
  34. Patton JL, Huckaby DG, Alvarez-Castaneda ST (2014) The evolutionary history and a systematic revision of woodrats of the Neotoma lepida group. UC Publication in Zoology, OaklandGoogle Scholar
  35. Post DM, Post DM, Reichman OJ, Wooster DE (1993) Characteristics and significance of the caches of eastern woodrats (Neotoma floridana). J Mammal 74:688–692CrossRefGoogle Scholar
  36. Rausher, MD (1992). Natural selection and the evolution of plant-insect interactions. In: Roitberg K, Isman MB (eds) Insect chemical ecology: an evolutionary approach. Chapman and Hall, New York, p 20–88Google Scholar
  37. Savolainen H, Pfäffli P (1978) Effects of long-term turpentine inhalation on rat brain protein metabolism. Chem Biol Interact 21:271–276CrossRefPubMedGoogle Scholar
  38. Schwartz CC, Nagy JG, Regelin WL (1980) Juniper oil yield, terpenoid concentration, and effects on deer. J Wildl Manag 44:107–113CrossRefGoogle Scholar
  39. Shipley LA, Forbey JS, Moore BD (2009) Revisiting the dietary niche: when is a mammalian herbivore a specialist. Integr Comp Biol 49:274–290CrossRefPubMedGoogle Scholar
  40. Skopec MM, Haley S, Dearing MD (2007) Differential hepatic gene expression of a dietary specialist (Neotoma stephensi) and generalist (Neotoma albigula) in response to juniper (Juniperus monosperma) ingestion. Comp Biochem Physiol D Genomics Proteomics 2:34–43CrossRefPubMedGoogle Scholar
  41. Skopec MM, Malenke JR, Halpert JR, Dearing MD (2013) An in vivo assay for elucidating the importance of cytochromes P450 for the ability of a wild mammalian herbivore (Neotoma lepida) to consume toxic plants. Physiol Biochem Zool 86:593–601PubMedCentralCrossRefPubMedGoogle Scholar
  42. Smith FA, Murray IW, Harding LE, Lease HM, Martin J (2014) Life in an extreme environment: a historical perspective on the influence of temperature on the ecology and evolution of woodrats. J Mammal 95:1128–1143CrossRefGoogle Scholar
  43. Sorensen JS, Dearing MD (2003) Elimination of plant toxins by herbivorous woodrats: revisiting an explanation for dietary specialization in mammalian herbivores. Oecologia 134:88–94CrossRefPubMedGoogle Scholar
  44. Sorensen JS, McLister JD, Dearinga MD (2004) Plant secondary metabolites compromise the energy budgets of specialist and generalist mammalian herbivores. Ecology 86:125–139CrossRefGoogle Scholar
  45. Sorensen JS, Mclister JD, Dearing MD (2005) Novel plant secondary metabolites impact dietary specialists more than generalists (Neotoma spp.). Ecology 86:140–154CrossRefGoogle Scholar
  46. Sperling F, Marcus WL, Collins C (1967) Acute effects of turpentine vapor on rats and mice. Toxicol Appl Pharmacol 10:8–20CrossRefPubMedGoogle Scholar
  47. Stones RC, Hayward CL (1968) Natural history of the desert woodrat, Neotoma lepida. Am Midl Nat 80:458–476CrossRefGoogle Scholar
  48. Torregrossa A-M, Dearing MD (2009) Caching as a behavioral mechanism to reduce toxin intake. J Mammal 90:803–810CrossRefGoogle Scholar
  49. Torregrossa AM, Azzara AV, Dearing MD (2011) Differential regulation of plant secondary compounds by herbivorous rodents. Funct Ecol 25:1232–1240CrossRefGoogle Scholar
  50. Vaughan TA, Czaplewski NJ (1985) Reproduction in Stephens’ woodrat: the wages of folivory. J Mammal 66:429–443CrossRefGoogle Scholar
  51. Verts BJ, Carraway LN (2002) Neotoma lepida. Mamm Species 699:1–12CrossRefGoogle Scholar
  52. Wilderman PR, Jang HH, Malenke JR, Salib M, Angermeier E, Lamime S, Dearing MD, Halpert JR (2014) Functional characterization of cytochromes P450 2B from the desert woodrat Neotoma lepida. Toxicol Appl Pharmacol 274:393–401PubMedCentralCrossRefPubMedGoogle Scholar
  53. Zahler P, Khan M (2003) Evidence for dietary specialization on pine needles by the woolly flying squirrel (Eupetaurus cinereus). J Mammal 84:480–486CrossRefGoogle Scholar
  54. Zlatnik E (1999) Juniperus osteosperma. In: Fire Eff. Inf. Syst. Accessed 10 Jun 2014

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Michele M. Skopec
    • 1
  • Kevin D. Kohl
    • 2
  • Katharina Schramm
    • 1
    • 2
  • James R. Halpert
    • 3
  • M. Denise Dearing
    • 2
  1. 1.Department of ZoologyWeber State UniversityOgdenUSA
  2. 2.Department of BiologyUniversity of UtahSalt Lake CityUSA
  3. 3.School of PharmacyUniversity of ConnecticutStorrsUSA

Personalised recommendations