Skip to main content
Log in

Nectar Attracts Foraging Honey Bees with Components of Their Queen Pheromones

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Floral nectar often contains chemicals that are deterrent to pollinators, presenting potential challenges to outcrossing plant species. Plants may be able to co-opt pollinator chemical signals to mitigate the negative effects of nectar deterrent compounds on pollination services. We found that buckwheat (Fagopyrum esculentum) and Mexican sunflower (Tithonia diversifolia) produce nectar with abundant phenolics, including three components of the Apis honeybee queen mandibular pheromone (QMP). In addition, these nectars contain a non-pheromonal phenolic, chlorogenic acid (CA), which was toxic to honeybees, and T. diversifolia nectar also contained isochlorogenic acid (IA). Fresh nectar or solutions containing nectar phenolics reduced Apis individual feeding compared to sucrose solutions. However, freely foraging bees preferred solutions with QMP components to control solutions, and QMP components over-rode or reversed avoidance of CA and IA. Furthermore, prior exposure to the presence or just the odor of QMP components removed the deterrent effects of CA and IA. By mimicking the honey bee pheromone blend, nectar may maintain pollinator attraction in spite of deterrent nectar compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adler LS (2000) The ecological significance of toxic nectar. Oikos 91:409–420

    Article  Google Scholar 

  • Adler LS, Irwin RE (2005) Ecological costs and benefits of defenses in nectar. Ecology 86:2968–2978

    Article  Google Scholar 

  • Adler LS, Seifert MG, Wink M, Morse GE (2012) Reliance on pollinators predicts defensive chemistry across tobacco species. Ecol Lett 15:1140–1148

    Article  PubMed  Google Scholar 

  • Beggs KT, Glendining KA, Marechal NM, Vergoz V, Nakamura I, Slessor KN, Mercer AR (2007) Queen pheromone modulates brain dopamine function in worker honey bees. Proc Natl Acad Sci U S A 104:2460–2464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Björkman T (1995) The effectiveness of heterostyly in preventing illegitimate pollination in dish-shaped flowers. Sex Plant Reprod 8:143–146

    Article  Google Scholar 

  • Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510

    Article  CAS  PubMed  Google Scholar 

  • Cawoy V, Kinet J-M, Jacquemart A-L (2008) Morphology of nectaries and biology of nectar production in the distylous species Fagopyrum esculentum. Ann Bot 102:675–684

    Article  PubMed Central  PubMed  Google Scholar 

  • Chaffiol A, Dupuy F, Barrozo RB, Kropf J, Renou M, Rospars J-P, Anton S (2014) Pheromone modulates plant odor responses in the antennal lobe of a moth. Chem Senses 39:451–463

    Article  CAS  PubMed  Google Scholar 

  • Dötterl S, Vereecken NJ (2010) The chemical ecology and evolution of bee-flower interactions: a review and perspectives. Can J Zool 88:668–697

    Article  Google Scholar 

  • Elliott SE, Irwin RE, Adler LS, Williams NM (2008) The nectar alkaloid, gelsemine, does not affect offspring performance of a native solitary bee, Osmia lignaria (Megachilidae). Ecol Entomol 33:298–304

    Article  Google Scholar 

  • Galen C, Kaczorowski R, Todd SL, Geib J, Raguso RA (2011) Dosage-dependent impacts of a floral volatile compound on pollinators, larcenists, and the potential for floral evolution in the alpine skypilot Polemonium viscosum. Am Nat 177:258–272

    Article  PubMed  Google Scholar 

  • Hartmann T, Theuring C, Bernays E (2003) Are insect-synthesized retronecine esters (creatonotines) the precursors of the male courtship pheromone in the arctiid moth Estigmene acrea? J Chem Ecol 29:2603–2608

    Article  CAS  PubMed  Google Scholar 

  • Heil M (2011) Nectar: generation, regulation and ecological functions. Trends Plant Sci 16:191–200

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Barajas‐Barron A, Orona‐Tamayo D, Wielsch N, Svatos A (2014) Partner manipulation stabilises a horizontally transmitted mutualism. Ecol Lett 17:185–192

    Article  PubMed  Google Scholar 

  • Hojo MK, Pierce NE, Tsuji K (2015) Lycaenid caterpillar secretions manipulate attendant ant behavior. Curr Biol 25:2260–2264

    Article  CAS  PubMed  Google Scholar 

  • Kayode J, Oyeyemi SD (2014) Pollen analysis of Apis mellifera honey collected from Nigeria. Am J Agric Forest 2:226–231

    Article  Google Scholar 

  • Keeling CI, Otis GW, Hadisoesilo S, Slessor KN (2001) Mandibular gland component analysis in the head extracts of Apis cerana and Apis nigrocincta. Apidologie 32:243–252

    Article  CAS  Google Scholar 

  • Kessler D, Baldwin IT (2007) Making sense of nectar scents: the effects of nectar secondary metabolites on floral visitors of Nicotiana attenuata. Plant J 49:840–854

    Article  CAS  PubMed  Google Scholar 

  • Kessler D, Gase K, Baldwin IT (2008) Field experiments with transformed plants reveal the sense of floral scents. Science 321:1200–1202

    Article  CAS  PubMed  Google Scholar 

  • Leiss KA, Maltese F, Choi YH, Verpoorte R, Klinkhamer PG (2009) Identification of chlorogenic acid as a resistance factor for thrips in chrysanthemum. Plant Physiol 150:1567–1575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liang Y, Cao W, Chen W-J, Xiao X-H, Zheng J-B (2009) Simultaneous determination of four phenolic components in citrus honey by high performance liquid chromatography using electrochemical detection. Food Chem 114:1537–1541

    Article  CAS  Google Scholar 

  • Liu F, He J, Fu W (2005) Highly controlled nest homeostasis of honey bees helps deactivate phenolics in nectar. Naturwissenschaften 92:297–299

    Article  CAS  PubMed  Google Scholar 

  • Mao W, Schuler MA, Berenbaum MR (2015) A dietary phytochemical alters caste-associated gene expression in honey bees. Sci Adv 1:e1500795

    Article  PubMed Central  PubMed  Google Scholar 

  • Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y (2007) Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biol 5:e118

    Article  PubMed Central  PubMed  Google Scholar 

  • McArt SH, Koch H, Irwin RE, Adler LS (2014) Arranging the bouquet of disease: floral traits and the transmission of plant and animal pathogens. Ecol Lett 17:624–636

    Article  PubMed  Google Scholar 

  • Mukhopadhyay SK, Gupta S, Das AP, Bera S (2007) The beekeeping potential of Sub-Himalayan West Bengal, India: a palynological assessment of honey. J Apic Res 46:165

    Google Scholar 

  • Ohnishi O (1991) Discovery of the wild ancestor of common buckwheat. Fagopyrum 11:5–10

    Google Scholar 

  • Plettner E, Otis GW, Wimalaratne PDC, Winston ML, Slessor KN, Pankiw T, Punchihewa PWK (1997) Species-and caste-determined mandibular gland signals in honeybees (Apis). J Chem Ecol 23:363–377

    Article  CAS  Google Scholar 

  • Reddy GV, Guerrero A (2004) Interactions of insect pheromones and plant semiochemicals. Trends Plant Sci 9:253–261

    Article  CAS  PubMed  Google Scholar 

  • Ruttner F (1988) Biogeography and taxonomy of honeybees. Springer, Berlin

    Book  Google Scholar 

  • Schiestl FP (2010) The evolution of floral scent and insect chemical communication. Ecol Lett 13:643–656

    Article  PubMed  Google Scholar 

  • Schiestl FP, Johnson SD, Raguso RA (2010) Floral evolution as a figment of the imagination of pollinators. Trends Ecol Evol 25:382–383

    Article  PubMed  Google Scholar 

  • Schulz S (1998) Insect-plant interactions − metabolism of plant compounds to pheromones and allomones by Lepidoptera and leaf beetles. Eur J Org Chem 1998:13–20

    Article  Google Scholar 

  • Sharrock R, Sinclair FL, Gliddon C, Rao IM, Barrios E, Mustonen P, Smithson P, Jones D, Godbold D (2004) A global assessment using PCR techniques of mycorrhizal fungal populations colonising Tithonia diversifolia. Mycorrhiza 14:103–109

    Article  CAS  PubMed  Google Scholar 

  • Sugahara M, Izutsu K, Nishimura Y, Sakamoto F (2013) Oriental orchid (Cymbidium floribundum) attracts the Japanese honeybee (Apis cerana japonica) with a mixture of 3-hydroxyoctanoic acid and 10-hydroxy-(E)-2-decenoic acid. Zool Sci 30:99–104

    Article  CAS  PubMed  Google Scholar 

  • Thomson JD, Draguleasa MA, Tan MG (2015) Flowers with caffeinated nectar receive more pollination. Arthropod Plant Interact 9:1–7

    Article  Google Scholar 

  • Tiedeken EJ, Stout JC, Stevenson PC, Wright GA (2014) Bumblebees are not deterred by ecologically relevant concentrations of nectar toxins. J Exp Biol 217:1620–1625

    Article  PubMed Central  PubMed  Google Scholar 

  • Vereecken NJ, Schiestl FP (2008) The evolution of imperfect floral mimicry. Proc Natl Acad Sci U S A 105:7484–7488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wright G, Baker D, Palmer M, Stabler D, Mustard J, Power E, Borland A, Stevenson P (2013) Caffeine in floral nectar enhances a pollinator’s memory of reward. Science 339:1202–1204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao G, Li J, Di N, Liu F (2014) Nectar phenolics drive cross visits between dimorphic flowers by honey bees. J Apic Res 53:489–492

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mr. Yong Xiong and Yonghe Miao for assistance in nectar sampling, and many research assistants including Guangyin Zhao, Jianjun Li, Mingyue Ji, and Liyun Luo. We also thank Dr. Wei Cao of Northwest University, Xi’an City, China, for conducting nectar chemistry analysis, and members of the Adler lab, Prof. David Denlinger, Dr. Martin Heil, and one anonymous reviewer for feedback on the manuscript. This work was supported by National Basic Research Program of China (2007CB411603) and National Natural Science Foundation of China (30870445 and 31270525).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanglin Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Gao, J., Di, N. et al. Nectar Attracts Foraging Honey Bees with Components of Their Queen Pheromones. J Chem Ecol 41, 1028–1036 (2015). https://doi.org/10.1007/s10886-015-0642-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-015-0642-2

Keywords