Advertisement

Journal of Chemical Ecology

, Volume 41, Issue 11, pp 965–974 | Cite as

The Green Gut: Chlorophyll Degradation in the Gut of Spodoptera littoralis

  • Amarsanaa Badgaa
  • Rita Büchler
  • Natalie Wielsch
  • Marie Walde
  • Rainer Heintzmann
  • Yannik Pauchet
  • Ales Svatos
  • Kerstin Ploss
  • Wilhelm BolandEmail author
Article

Abstract

Chlorophylls, the most prominent natural pigments, are part of the daily diet of herbivorous insects. The spectrum of ingested and digested chlorophyll metabolites compares well to the pattern of early chlorophyll-degradation products in senescent plants. Intact chlorophyll is rapidly degraded by proteins in the front- and midgut. Unlike plants, insects convert both chlorophyll a and b into the corresponding catabolites. MALDI-TOF/MS imaging allowed monitoring the distribution of the chlorophyll catabolites along the gut of Spodoptera littoralis larvae. The chlorophyll degradation in the fore- and mid-gut is strongly pH dependent, and requires alkaline conditions. Using LC-MS/MS analysis we identified a lipocalin-type protein in the intestinal fluid of S. littoralis homolog to the chlorophyllide a binding protein from Bombyx mori. Widefield and high-resolution autofluorescence microscopy revealed that the brush border membranes are covered with the chlorophyllide binding protein tightly bound via its GPI-anchor to the gut membrane. A function in defense against gut microbes is discussed.

Keywords

Chlorophyll Chlorophyll degradation Lepidopterans Chlorophyllide binding protein Imaging of chlorophyll catabolites Pheophorbide Pyropheophorbide Larval gut imaging 

Notes

Acknowledgments

We thank Angelika Berg for taking care of the Lima beans and insects, and Dr. Christian Paetz for help with NMR.

Supplementary material

10886_2015_636_MOESM1_ESM.doc (6.9 mb)
ESM 1 (DOC 7027 kb)

References

  1. Angelucci C, Barret-Wilt GA, Hunt DF, Akhurst RJ, East PD, Gordon KHJ, Campbell PM (2008) Diversity of aminopeptidases, derived from four lepidopteran gene duplications, and polycalins expressed in the midgut of Helicoverpa armigera: identification of proteins binding the delta-endotoxin, Cry1Ac of Bacillus thuringiensis. Insect Biochem Mol Biol 38:685–696PubMedCentralCrossRefPubMedGoogle Scholar
  2. Badgaa A, Boland W (2013) Chlorophyll catabolites in the frass of the small tortoiseshell caterpillars (Aglais urticae L.). Mongolian J Chem 14:46–50Google Scholar
  3. Badgaa A, Jia A, Ploss K, Boland W (2014) Chlorophyll degradation and chlorophyll binding in the gut of generalist and specialist Lepidopteran cateripillars. J Chem Ecol 40:1232–1240CrossRefPubMedGoogle Scholar
  4. Banala S, Moser S, Muller T, Kreutz C, Holzinger A, Lutz C, Kräutler B (2010) Hypermodified fluorescent chlorophyll catabolites: source of blue luminescence in senescent leaves. Angew Chem Int Ed 49:5174–5177CrossRefGoogle Scholar
  5. Bergomaz R, Boppré M (1986) A simple instant diet for rearing Arctiidae and other moths. J Lepidopterists’ Soc 40:131–137Google Scholar
  6. Bordier C, Etges RJ, Ward J, Turnier MJ, Cardosa de Almeida ML (1986) Leishmania and trypanosoma surface glycoproteins have a common glycophospholipid membrane anchor. Proc Natl Acad Sci U S A 83:5988–5991PubMedCentralCrossRefPubMedGoogle Scholar
  7. Campbell PM, Cao AT, Hines ER, East PD, Gordon KHJ (2008) Proteomic analysis of the peritrophic matrix from the gut of the caterpillar, Helicoverpa armigera. Insect Biochem Mol Biol 38:950–958CrossRefPubMedGoogle Scholar
  8. Christ B, Hörtensteiner S (2014) Mechanism and significance of chlorophyll breakdown. J Plant Growth Regul 33:4–20CrossRefGoogle Scholar
  9. Daloze D, Pasteels JM (1994) Isolation of 8-hydroxygeraniol-8-O-β-d-glucoside, a probable intermediate in biosynthesis of iridoid monoterpenes, from defensive secretions of Plagiodera versicolora and Gastrophysa viridula (Coleoptera: Chrysomelidae). J Chem Ecol 20:2089–2097CrossRefPubMedGoogle Scholar
  10. Doi M, Inage T, Shioi Y (2001) Chlorophyll degradation in a Chlamydomonas reinhardtiiMutant: an accumulation of pyropheophorbide a by anaerobiosis. Plant Cell Physiol 42:469–474CrossRefPubMedGoogle Scholar
  11. Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318:1–14PubMedCentralCrossRefPubMedGoogle Scholar
  12. Funke M, Büchler R, Mahobia V, Schneeberg A, Ramm M, Boland W (2008) Rapid hydrolysis of quorum-sensing molecules in the gut of lepidopteran larvae. ChemBioChem 9:1953–1959CrossRefPubMedGoogle Scholar
  13. Gustafson MGL (1999) Extended resolution fluorescence microscopy. Curr Opin Struct Biol 9:627–628CrossRefGoogle Scholar
  14. Haidl H, Knodlmayer K, Rüdiger W, Scheer H, Schoch UJ (1985) Degradation of bacteriochlorophyll a in Rhodopseumdomonas sphaeroides R. 26. Zeitschr Naturforsch 40C:685–692Google Scholar
  15. Harradine PJ, Harris PG, Head RN, Harris RP, Maxwell (1996) Steryl chlorin esters are formed by zooplankton herbivory. Geochim Cosmochim Acta 60:2265–2270CrossRefGoogle Scholar
  16. Hayashiya K (1978) Red fluorescent protein in the digestive juice of the silkworm larvae fed on host-plant mulberry leaves. Entomol Exp Appl 24:428–436CrossRefGoogle Scholar
  17. Heintzmann R, Cremer C (1999) Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. Proc SPIE 3568:185CrossRefGoogle Scholar
  18. Hörtensteiner S (1999) Chlorophyll breakdown in higher plants and algae. Cell Mol Life Sci 56:330–347CrossRefPubMedGoogle Scholar
  19. Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. Biochim Biophys Acta 1807:977–988CrossRefPubMedGoogle Scholar
  20. Hossain DM, Shitomi Y, Moriyama K, Higuchi M, Hayakawa T, Mitsui T, Sato R, Hori H (2004) Characterization of a novel plasma membrane protein, expressed in the midgut epithelia of Bombyx mori, that binds to Cry1A toxins. Appl Environ Microbiol 70:4604–4612PubMedCentralCrossRefPubMedGoogle Scholar
  21. Howes RM (2009) Hydrogen peroxide: a review of a scientifically verifiable omnipresent ubiquitous essentiality of obligate, aerobic, carbon-based life forms. Internet J Plastic Surg 7:1Google Scholar
  22. Ikeda Y, Yamashita J, Hijikuro I, Imuta S, Hiroki Y, Takahashi T (2011) PCT Int Appl WO 2011078383 A1Google Scholar
  23. Krasnovsky AA, Neverov KV, Egorov SY, Roeder B, Levald T (1990) Photophysical studies of pheophorbide a and pheophytin a. phosphorescence and photosensitized singlet oxygen luminescence. J Photochem Photobiol B Biol 5:245–254CrossRefGoogle Scholar
  24. Kräutler B, Matile P (1999) Solving the riddle of chlorophyll breakdown. Acc Chem Res 32:35–43CrossRefGoogle Scholar
  25. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacterial phagae T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  26. Louda JW, Neto RR, Magalhaes ARM, Schneider VF (2008) Pigment alterations in the brown mussel Pema pema. Comp Biochem Physiol B 150:385–394CrossRefPubMedGoogle Scholar
  27. Ma LF, Dolphin D (1999) The metabolites of dietary chlorophylls. Phytochemistry 50:195–202CrossRefGoogle Scholar
  28. Matile P, Hörtensteiner S, Thomas H, Kräutler B (1996) Chlorophyll breakdown in senescent leaves. Plant Physiol 112:1403–1409PubMedCentralPubMedGoogle Scholar
  29. Matile P, Hörtensteiner S, Thomas H (1999) Chlorophyll degradation. Annu Rev Plant Physiol Plant Mol Biol 50:67–95CrossRefPubMedGoogle Scholar
  30. Matti KM, Singh SS, Savanurmath CHJ, Hinchigeri SHB (2009) A unique red fluorescent protein of silkworm bearing two photochromic moieties. Photochem Photobiol Sci 8:1364–1372CrossRefPubMedGoogle Scholar
  31. Mauchamp B, Royer C, Garel A, Jalabert A, Da Rocha M, Grenier AM, Labas V, Vinh J, Mita K, Kadano K, Chavancy G (2006) Polycalin (chlorophyllid A binding protein): a novel, very large fluorescent lipocalin from the midgut of the domestic silkworm Bombyx mori L. Insect Biochem Mol Biol 36:623–633CrossRefPubMedGoogle Scholar
  32. Ni X, Quisenberry SS, Markwell J, Heng-Moss T, Higley L, Baxendale F, Sarath G, Klucas R (2001) In vitro enzymatic chlorophyll catabolism in wheat elicited by cereal aphid feeding. Entomol Exp Appl 101:159–166CrossRefGoogle Scholar
  33. Pandian GN, Ishikawa T, Togashi M, Shitomi Y, Haginoya K, Yamamoto S, Nishiumi T, Hori H (2008) Bombyx mori midgut membrane protein P252, which binds to Bacillus thuringiensis Cry1A, is a chlorophyllide-binding protein, and the resulting complex has antimicrobial activity. Appl Environ Microbiol 74:1324–1331PubMedCentralCrossRefPubMedGoogle Scholar
  34. Pandian GN, Ishikawa T, Vaijayanthi T, Hossain DM, Yamamoto S, Nishiumi T, Angsuthanasombat C, Haginoya K, Mitsui T, Hori H (2010) Formation of macromolecule complex with Bacillus thuringiensis Cry1A toxins and chlorophyllide binding 252-kDa lipocalin-like protein locating on Bombyx mori midgut membrane. J Membr Biol 237:125–136CrossRefPubMedGoogle Scholar
  35. Park YJ, Kim WS, Ko SH, Lim DS, Lee HJ, Lee WY, Lee DW (2003) Separation and characterization of chlorophyll degradation products in silkworm using HPLC-UV-APCI-MS. J Liq Chromatogr Relat Technol 26:3183–3197CrossRefGoogle Scholar
  36. Pauchet Y, Muck A, Svatos A, Heckel DG, Preiss S (2008) Mapping the larval midgut lumen proteome of Helicoverpa armigera, a generalist herbivorous insect. J Proteome Res 7:1629–1639CrossRefPubMedGoogle Scholar
  37. Pauchet Y, Muck A, Svatos A, Heckel DG (2009) Chromatographic and electrophoretic resolution of proteins and protein complexes from the larval midgut microvilli of Manduca sexta. Insect Biochem Mol Biol 39:467–474CrossRefPubMedGoogle Scholar
  38. Reyle K, Meyer K, Reichstein T (1950) Partialsynthese yon Convallotoxin. Glykoside und Aglykone, 61. Mitteilung. Helv Chim Acta 33:1541–1546CrossRefGoogle Scholar
  39. Shevchenko A, Sunyaev S, Loboda A, Shevchenko A, Bork P, Ens W, Standing KG (2001) Charting the proteomes of organisms with unsequenced genomes by MALDI-quadrupole time of flight mass spectrometry and BLAST homology searching. Anal Chem 73:1917–1926CrossRefPubMedGoogle Scholar
  40. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860CrossRefPubMedGoogle Scholar
  41. Suzuki Y, Doi M, Shioi Y (2002) Two enzymatic reaction pathways in the formation of pyropheophorbide a. Photosynth Res 74:225–233CrossRefPubMedGoogle Scholar
  42. Tang X, Freitak D, Vogel H, Ping L, Shao Y, Schönemann L, Arias CE, Andersen G, Westermann M, Heckel DG, Boland W (2012) Complexity and dietary-dependent variability of polyphagous larval gut commensal microbiota. PLoS One 7:e36978PubMedCentralCrossRefPubMedGoogle Scholar
  43. Thornberg JP (1975) Chlorophyll-proteins - light harvesting and reaction center components of plants. Annu Rev Plant Physiol Plant Mol Biol 26:127–158CrossRefGoogle Scholar
  44. Tsuchiya T, Ohta H, Okawa K, Iwamatsu A, Shimada H, Masudsa T, Takamiya K (1999) Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Proc Natl Acad Sci U S A 96:15362–15367PubMedCentralCrossRefPubMedGoogle Scholar
  45. Vencl F, Gómez NEQ, Ploss K, Boland W (2009) The chlorophyll catabolite pheophorbide a confers predation resistance in a larval tortoise beetle shield defense. J Chem Ecol 35:281–288PubMedCentralCrossRefPubMedGoogle Scholar
  46. Vrkoslav V, Muck A, Cvacka J, Svatos A (2010) MALDI imaging of neutral cuticular lipids in insects and plants. J Am Soc Mass Spectrom 21:220–231CrossRefPubMedGoogle Scholar
  47. Ziegler R, Blaheta A, Guha N, Schonegge B (1988) Enzymatic formation of phoephorbide and pyropheophorbide during chlorophyll degradation in amutant of Chlorella fusca. J Plant Physiol 132:327–332CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Amarsanaa Badgaa
    • 1
    • 4
  • Rita Büchler
    • 1
  • Natalie Wielsch
    • 1
  • Marie Walde
    • 2
  • Rainer Heintzmann
    • 2
    • 3
  • Yannik Pauchet
    • 1
  • Ales Svatos
    • 1
  • Kerstin Ploss
    • 1
  • Wilhelm Boland
    • 1
    Email author
  1. 1.Max Planck Institute for Chemical EcologyJenaGermany
  2. 2.Institute of Physical ChemistryFriedrich-Schiller-Universität JenaJenaGermany
  3. 3.Leibniz Institut of Photonic Technology (IPHT)JenaGermany
  4. 4.Institute of Chemistry and Chemical TechnologyMongolian Academy of SciencesUlaanbataarMongolia

Personalised recommendations