The Effects of Diesel Exhaust Pollution on Floral Volatiles and the Consequences for Honey Bee Olfaction

Abstract

There is growing evidence of a substantial decline in pollinators within Europe and North America, most likely caused by multiple factors such as diseases, poor nutrition, habitat loss, insecticides, and environmental pollution. Diesel exhaust could be a contributing factor to this decline, since we found that diesel exhaust rapidly degrades floral volatiles, which honey bees require for flower recognition. In this study, we exposed eight of the most common floral volatiles to diesel exhaust in order to investigate whether it can affect volatile mediated plant-pollinator interaction. Exposure to diesel exhaust altered the blend of common flower volatiles significantly: myrcene was considerably reduced, β-ocimene became undetectable, and β-caryophyllene was transformed into its cis-isomer isocaryophyllene. Proboscis extension response (PER) assays showed that the alterations of the blend reduced the ability of honey bees to recognize it. The chemically reactive nitrogen oxides fraction of diesel exhaust gas was identified as capable of causing degradation of floral volatiles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abrol DP (2012) Decline in pollinators. Pollination biology: biodiversity conservation and agricultural production. Springer, Netherlands, pp 545–601

    Book  Google Scholar 

  2. Atkinson R, Arey J (2003) Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmospheric Environment 37(Supplement 2):197–219

  3. Augusto O, Bonini MG, Amanso AM, Linares E, Santos CCX, DE Menezes SL (2002) Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology. Free Radic Biol Med 32:841–859

    CAS  Article  PubMed  Google Scholar 

  4. Babushok VI, Linstrom PJ, Zenkevich IG (2011) Retention indices for frequently reported compounds of plant essential oils. J Phys Chem Ref Data 40:043101

    Article  Google Scholar 

  5. Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and The Netherlands. Science 313:351–354

    CAS  Article  PubMed  Google Scholar 

  6. Bitterman ME, Menzel R, Fietz A, Schafer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97:107–119

    CAS  Article  PubMed  Google Scholar 

  7. Blight MM, Métayer ML, Pham-Delègue MH, Pickett JA, Marion-Poll F, Wadhams LJ (1997) Identification of floral volatiles involved in recognition of oilseed rape flowers, Brassica napus by honeybees, Apis mellifera. J Chem Ecol 23:1715–1727

    CAS  Article  Google Scholar 

  8. Bommarco R, Marini L, Vaissière B (2012) Insect pollination enhances seed yield, quality, and market value in oilseed rape. Oecologia 169:1025–1032

    Article  PubMed  Google Scholar 

  9. Calogirou A, Larsen BR, Kotzias D (1999) Gas-phase terpene oxidation products: a review. Atmos Environ 33:1423–1439

    CAS  Article  Google Scholar 

  10. Dobson HEM (1994) Floral volatiles in insect biology. In: Bernays EA (ed) Insect-plant interactions. CRC Press, London, pp. 47–81

    Google Scholar 

  11. Dobson HEM (2006) Relationship between floral fragrance composition and type of pollinator. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC Press, Boca Raton, pp. 147–198

    Chapter  Google Scholar 

  12. Dötterl S, Vereecken NJ (2010) The chemical ecology and evolution of bee-flower interactions: a review and perspectives. Can J Zool 88:668–697

    Article  Google Scholar 

  13. Epstein D, Frazier JL, Purcell-Miramontes M, Hackett K, Rose R, Erickson T, Moriarty T, Steeger T (2013) USDA: report on the national stakeholders conference on honey bee health. http://www.usda.gov/documents/ReportHoneyBeeHealth.pdf. Accessed 27 August 2015

  14. European Commission (2014) Environment: Commission takes action against UK for persistent air pollution problems. http://europa.eu/rapid/press-release_IP-14-154_en.htm

  15. Fehsenfeld F, Calvert J, Fall R, Goldan P, Guenther AB, Hewitt CN, Lamb B, Liu S, Trainer M, Westberg H, Zimmerman P (1992) Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Glob Biogeochem Cycles 6:389–430

    CAS  Article  Google Scholar 

  16. Free JB (1993) Insect pollination of crops, 2nd edn. Academic Press, London

    Google Scholar 

  17. Fuentes J, Wang D, Bowling D, Potosnak M, Monson R, Goliff W, Stockwell W (2007) Biogenic hydrocarbon chemistry within and above a mixed deciduous forest. J Atmos Chem 56:165–185

    CAS  Article  Google Scholar 

  18. Fuentes JD, Roulston TH, Zenker J (2013) Ozone impedes the ability of a herbivore to find its host. Environ Res Lett 8:014048

    CAS  Article  Google Scholar 

  19. Ghazoul J (2005) Buzziness as usual? Questioning the global pollination crisis. Trends Ecol Evol 20:367–373

    Article  PubMed  Google Scholar 

  20. Girling RD, Lusebrink I, Farthing E, Newman TA, Poppy GM (2013) Diesel exhaust rapidly degrades floral odours used by honeybees. Sci Report 3:2779

    Article  Google Scholar 

  21. Kerr JT, Pindar A, Galpern P, Packer L, Potts SG, Roberts SM, Rasmont P, Schweiger O, Colla SR, Richardson LL, Wagner DL, Gall LF, Sikes DS, Pantoja A (2015) Climate change impacts on bumblebees converge across continents. Science 349:177–180

    CAS  Article  PubMed  Google Scholar 

  22. Kjeldsen F, Christensen LP, Edelenbos M (2003) Changes in volatile compounds of carrots (daucus carota L.) during refrigerated and frozen storage. J Agric Food Chem 51:5400–5407

    CAS  Article  PubMed  Google Scholar 

  23. Klein A-M, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. P Roy Soc Lond B Bio 274:303–313

    Article  Google Scholar 

  24. Klun JA, Chapman OL, Mattes KC, Wojtkowski PW, Beroza M, Sonnet PE (1973) Insect sex pheromones: minor amount of opposite geometrical isomer critical to attraction. Science 181:661–663

    CAS  Article  PubMed  Google Scholar 

  25. Knudsen J, Eriksson R, Gershenzon J, Ståhl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120

    Article  Google Scholar 

  26. Kuwabara M (1957) Bildung des bedingten reflexes von pavlovs typus bei der honigbiene, Apis mellifica. Journal of the faculty of science, Hokkaido university, series 6. Zoology 13:458–464

    Google Scholar 

  27. Lee A, Goldstein AH, Keywood MD, Gao S, Varutbangkul V, Bahreini R, Mg NL, Flagan RC, Seinfeld JH (2006) Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes. J Geophys Res Atmos 111:D07302

  28. McFrederick QS, Kathilankal JC, Fuentes JD (2008) Air pollution modifies floral scent trails. Atmos Environ 42:2336–2348

    CAS  Article  Google Scholar 

  29. McFrederick QS, Fuentes JD, Roulston T, Kathilankal JC, Lerdau M (2009) Effects of air pollution on biogenic volatiles and ecological interactions. Oecologia 160:411–420

    Article  PubMed  Google Scholar 

  30. Naka H, Suzuki T, Watarai T, Horie Y, Mochizuki F, Mochizuki A, Tsuchida K, Arita Y, Ando T (2013) Identification of the sex pheromone secreted by synanthedon tenuis (Lepidoptera: sesiidae). Appl Entomol Zool 48:27–33

    CAS  Article  Google Scholar 

  31. Oldroyd BP (2007) What’s killing American honey bees? PLoS Biol 5:e168

  32. Pinto D, Blande J, Nykänen R, Dong W-X, Nerg A-M, Holopainen J (2007a) Ozone degrades common herbivore-induced plant volatiles: does this affect herbivore prey location by predators and parasitoids? J Chem Ecol 33:683–694

    CAS  Article  PubMed  Google Scholar 

  33. Pinto D, Nerg A-M, Holopainen J (2007b) The role of ozone-reactive compounds, terpenes, and green leaf volatiles (GLVs), in the orientation of Cotesia plutellae. J Chem Ecol 33:2218–2228

    CAS  Article  PubMed  Google Scholar 

  34. Pinto DM, Himanen SJ, Nissinen A, Nerg AM, Holopainen JK (2008) Host location behavior of Cotesia plutellae kurdjumov (hymenoptera: braconidae) in ambient and moderately elevated ozone in field conditions. Environ Pollut 156:227–231

    CAS  Article  PubMed  Google Scholar 

  35. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353. doi:10.1016/j.tree.2010.01.007

    Article  PubMed  Google Scholar 

  36. Rachlin S (1971) Process for preparing isocaryophyllene. US Patent 3621070, 192.14, R448

  37. Reinhard J, Sinclair M, Srinivasan MV, Claudianos C (2010) Honeybees learn odour mixtures via a selection of key odorants. PLoS One 5:e9110

  38. Reissell A, Aschmann SM, Atkinson R, Arey J (2002) Products of the OH radical- and O3-initiated reactions of myrcene and ocimene. J Geophys Res 107:4138

    Article  Google Scholar 

  39. Roderick WR (1966) Current ideas on the chemical basis of olfaction. J Chem Educ 43:510

    CAS  Article  PubMed  Google Scholar 

  40. Setiabudi A, Makkee M, Moulijn JA (2004) The role of NO2 and O2 in the accelerated combustion of soot in diesel exhaust gases. Appl Catal B Environ 50:185–194

    CAS  Article  Google Scholar 

  41. Silverstein RM, Young JC (1976) Insects generally use multicomponent pheromones. In: Beroza M (ed) Pest management with insect sex attractants, ACS Symposium Series. American Chemical Society, Washington, pp. 1–29

    Chapter  Google Scholar 

  42. Steffan-Dewenter I, Potts SG, Packer L (2005) Pollinator diversity and crop pollination services are at risk. Trends Ecol Evol 20:651–652

    Article  PubMed  Google Scholar 

  43. Titov AI (1963) The free radical mechanism of nitration. Tetrahedron 19:557–580

    CAS  Article  Google Scholar 

  44. Vanbergen AJ, The Insect Pollinators Initiative (2013) Threats to an ecosystem service: pressures on pollinators. Front Ecol Environ 11:251–259

    Article  Google Scholar 

  45. Wright GA, Schiestl FP (2009) The evolution of floral scent: the influence of olfactory learning by insect pollinators on the honest signalling of floral rewards. Funct Ecol 23:841–851

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Wittko Francke for valuable comments on the manuscript, Christine M. Reitmayer for help with beekeeping. We also thank the Erbilgin lab at the University of Alberta for providing us with a trans-verbenol mass spectrum. Funding for this research has been provided through the Leverhulme Trust Research Project Grant RPG-089.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Inka Lusebrink.

Electronic supplementary material

ESM 1

(PDF 566 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lusebrink, I., Girling, R.D., Farthing, E. et al. The Effects of Diesel Exhaust Pollution on Floral Volatiles and the Consequences for Honey Bee Olfaction. J Chem Ecol 41, 904–912 (2015). https://doi.org/10.1007/s10886-015-0624-4

Download citation

Keywords

  • Floral scent compounds
  • Diesel exhaust
  • Nitrogen oxides
  • Scent degradation
  • Scent recognition
  • Proboscis extension response