Advertisement

Journal of Chemical Ecology

, Volume 41, Issue 8, pp 766–779 | Cite as

Chemoreception of the Seagrass Posidonia Oceanica by Benthic Invertebrates is Altered by Seawater Acidification

  • Valerio Zupo
  • Chingoileima Maibam
  • Maria Cristina Buia
  • Maria Cristina Gambi
  • Francesco Paolo Patti
  • Maria Beatrice Scipione
  • Maurizio Lorenti
  • Patrick Fink
Article

Abstract

Several plants and invertebrates interact and communicate by means of volatile organic compounds (VOCs). These compounds may play the role of infochemicals, being able to carry complex information to selected species, thus mediating inter- or intra-specific communications. Volatile organic compounds derived from the wounding of marine diatoms, for example, carry information for several benthic and planktonic invertebrates. Although the ecological importance of VOCs has been demonstrated, both in terrestrial plants and in marine microalgae, their role as infochemicals has not been demonstrated in seagrasses. In addition, benthic communities, even the most complex and resilient, as those associated to seagrass meadows, are affected by ocean acidification at various levels. Therefore, the acidification of oceans could produce interference in the way seagrass-associated invertebrates recognize and choose their specific environments. We simulated the wounding of Posidonia oceanica leaves collected at two sites (a control site at normal pH, and a naturally acidified site) off the Island of Ischia (Gulf of Naples, Italy). We extracted the VOCs and tested a set of 13 species of associated invertebrates for their specific chemotactic responses in order to determine if: a) seagrasses produce VOCs playing the role of infochemicals, and b) their effects can be altered by seawater pH. Our results indicate that several invertebrates recognize the odor of wounded P. oceanica leaves, especially those strictly associated to the leaf stratum of the seagrass. Their chemotactic reactions may be modulated by the seawater pH, thus impairing the chemical communications in seagrass-associated communities in acidified conditions. In fact, 54 % of the tested species exhibited a changed behavioral response in acidified waters (pH 7.7). Furthermore, the differences observed in the abundance of invertebrates, in natural vs. acidified field conditions, are in agreement with these behavioral changes. Therefore, leaf-produced infochemicals may influence the structure of P. oceanica epifaunal communities, and their effects can be regulated by seawater acidification.

Keywords

Acidification Posidonia oceanica Wound-activated VOC Invertebrate Seagrass Odor Infochemical 

Notes

Acknowledgments

This research was partially funded by the Flagship RITMARE - The Italian Research for the Sea - coordinated by the Italian National Research Council and funded by the Italian Ministry of Education, University and Research. Chingoileima Maibam performed these studies in the frame of an Open University PhD course funded by SZN, under the supervision of V. Zupo. Patrick Fink was supported by an EU Assemble Marine Grant (No. 1060/G6). We are grateful to G. Romano (SZN) for help in the spectrophotometric evaluation of decadienal distribution. We thank Cpt. V. Rando for conducting the operations at sea on board the vessel Phoenicia of Stazione Zoologica Anton Dohrn.

References

  1. Apostolaki ET, Vizzini S, Hendriks IE, Olsen YS (2014) Seagrass ecosystem response to long-term high CO2 in a Mediterranean volcanic vent. Mar Environ Res 99:9–15. doi: 10.1016/j.marenvres.2014.05.008 CrossRefPubMedGoogle Scholar
  2. Arnold T, Mealey C, Leahey H, Miller AW, Hall-Spencer JM, Milazzo M, Maers K (2012) Ocean acidification and the loss of phenolic substances in marine plants. Plos One 7, e35107. doi: 10.1371/journal.pone.0035107 PubMedCentralCrossRefPubMedGoogle Scholar
  3. Brewer PG (2013) A short history of ocean acidification science in the 20th century: a chemist’s view. Biogeosciences 10:7411–7422. doi: 10.5194/bg-10-7411-2013 CrossRefGoogle Scholar
  4. Briffa M, de la Haye K, Munday PL (2012) High CO2 and marine animal behaviour: potential mechanisms and ecological consequences. Mar Pollut Bull 64:1519–1528. doi: 10.1016/j.marpolbul.2012.05.032 CrossRefPubMedGoogle Scholar
  5. Buia MC, Zupo V, Mazzella L (1992) Primary production and growth dynamics in Posidonia oceanica. PSZN I: Mar Ecol 13:2–16. doi: 10.1111/j.1439-0485.1992.tb00336.x Google Scholar
  6. Buia MC, Gambi MC, Dappiano M (2004) The seagrass systems. In: Gambi MC, Dappiano M (eds) Mediterranean marine benthos: a manual of methods for its sampling and study. Biol Mar Mediterr 11 (Suppl. 1), Chap. 5, pp 133–184Google Scholar
  7. Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res Oceans 110:C9. doi: 10.1029/2004JC002671 CrossRefGoogle Scholar
  8. Campbell JE, Fourqurean JW (2013) Effects of in situ CO2 enrichment on the structural and chemical characteristics of the seagrass Thalassia testudinum. Mar Biol 160:1465–1475. doi: 10.1007/s00227-013-2199-3 CrossRefGoogle Scholar
  9. Chase R (1982) The olfactory sensitivity of snails, Achatina fulica. J Comp Physiol 148:225–235. doi: 10.1007/BF00619129 CrossRefGoogle Scholar
  10. Cigliano M, Gambi MC, Rodolfo-Metalpa R, Patti FP, Hall-Spencer JM (2010) Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents. Mar Biol 157:2489–2502. doi: 10.1007/s00227-010-1513-6 CrossRefGoogle Scholar
  11. Dicke M, Sabelis MW (1988) Infochemical terminology: based on cost-benefit analysis rather than original compounds? Funct Ecol 2:131–139CrossRefGoogle Scholar
  12. Dixson DL, Munday PL, Jones GP (2010) Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol Lett 13:68–75. doi: 10.1111/j.1461-0248.2009.01400.x CrossRefPubMedGoogle Scholar
  13. Dolecal RE, Long JD (2014) Chemically mediated foraging by subtidal marine predators: a field test of tritrophic cues. Mar Ecol Prog Ser 498:161–169. doi: 10.3354/meps10627 CrossRefGoogle Scholar
  14. Donnarumma L, Lombardi C, Cocito S, Gambi MC (2014) Settlement pattern of Posidonia oceanica epibionts along a gradient of ocean acidification: an approach with mimics. Med Mar Sci. doi: 10.12681/mms.677 Google Scholar
  15. Fabricius KE, Déath G, Noonan S, Uthicke S (2014) Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities. Proc R Soc B Biol Sci 281:1775. doi: 10.1098/rspb.2013.2479 Google Scholar
  16. Fink P (2007) Ecological functions of volatile organic compounds in aquatic systems. Mar Freshw Behav Physiol 40:155–168. doi: 10.1080/10236240701602218 CrossRefGoogle Scholar
  17. Fink P, von Elert E, Jüttner F (2006a) Volatile foraging kairomones in the littoral zone: attraction of an herbivorous freshwater gastropod to algal odors. J Chem Ecol 32:1867–1881. doi: 10.1007/s10886-006-9115-y CrossRefPubMedGoogle Scholar
  18. Fink P, von Elert E, Jüttner F (2006b) Oxylipins from freshwater diatoms act as attractants for a benthic herbivore. Arch Hydrobiol 167:561–574. doi: 10.1127/0003-9136/2006/0167-0561 CrossRefGoogle Scholar
  19. Gambi MC, Lorenti M, Russo GF, Scipione MB, Zupo V (1992) Depth and seasonal distribution of some groups of the vagile fauna of Posidonia oceanica leaf stratum: structural and feeding guild analyses. Mar Ecol 13:17–39. doi: 10.1111/j.1439-0485.1992.tb00337.x CrossRefGoogle Scholar
  20. Garrard SL, Beaumont NJ (2014) The effect of ocean acidification on carbon storage and sequestration in seagrass beds; a global and UK context. Mar Pollut Bull 86:138–46. doi: 10.1016/j.marpolbul.2014.07.032 CrossRefPubMedGoogle Scholar
  21. Garrard SL, Hunter RC, Frommel AY, Lane AC, Phillips JC, Cooper R, Dineshram R, Cardini U, McCoy SJ, Arnberg M, Rodrigues Alves BG, Annane S, de Orte MR, Kumar A, Aguirre-Martinez GV, Maneja HH, Basallote MD, Ape F, Torstensson A, Bjoerk MM (2013) Biological impacts of ocean acidification: a postgraduate perspective on research priorities. Mar Biol 160:1789–1805. doi: 10.1007/s00227-012-2033-3 CrossRefGoogle Scholar
  22. Garrard SL, Gambi MC, Scipione MB, Patti FP, Lorenti M, Zupo V, Paterson DM, Buia MC (2014) Indirect effects may buffer negative responses of seagrass invertebrate communities to ocean acidification. J Exp Mar Biol Ecol 421:31–38. doi: 10.1016/jembe.2014.07.011 CrossRefGoogle Scholar
  23. Gartner A, Tuya F, Lavery PS, McMahon K (2013) Habitat preferences of macroinvertebrate fauna among seagrasses with varying structural forms. J Exp Mar Biol Ecol 439:143–151. doi: 10.1016/j.jembe.2012.11.009 CrossRefGoogle Scholar
  24. Grote R., Monson RK, Niinemets Ü (2013) Leaf-level models of constitutive and stress-driven volatile organic compound emissions In: Niinemets Ü, Monson RK (eds.) Biology, controls and models of tree volatile organic compound emissions. Berlin: Springer Science + Business Media B.V. pp 315–355Google Scholar
  25. Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia MC (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99. doi: 10.1038/nature07051 CrossRefPubMedGoogle Scholar
  26. Horner AJ, Nickles SP, Weissburg MJ, Derby CD (2006) Source and specificity of chemical cues mediating shelter preference of Caribbean spiny lobsters (Panulirus argus). Biol Bull 211:28–139CrossRefGoogle Scholar
  27. Horner AJ, Schmidt M, Edwards DH, Derby CD (2008) Role of the olfactory pathway in agonistic behavior of crayfish Procambarus clarkii. Invertebr Neurosci 8:11–18. doi: 10.1007/s10158-007-0063-1 CrossRefGoogle Scholar
  28. IPCC (2007) Climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds.) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the inter-governmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  29. James NC, Cowley PD, Whitfiels AK, Kaiser H (2008) Choice chamber experiments to test the attraction of postflexion Rhabdosargus holubi larvae to water of estuarine and riverine origin. Estuar Coast Shelf Sci 77:143–149. doi: 10.1016/j.ecss.2007.09.010 CrossRefGoogle Scholar
  30. Jernakoff P, Nielsen J (1998) Plant-animal associations in two species of seagrasses in Western Australia. Aquat Bot 60:359–376. doi: 10.1016/S0304-3770(97)00100-9 CrossRefGoogle Scholar
  31. Jüttner F (1988) Quantitative analysis of volatile organic-compounds. Methods Enzymol 167:609–616CrossRefGoogle Scholar
  32. Jüttner F, Messina P, Patalano C, Zupo V (2010) Odour compounds of the diatom Cocconeis scutellum: effects on benthic herbivores living on Posidonia oceanica. Mar Ecol Prog Ser 400:63–73. doi: 10.3354/meps08381 CrossRefGoogle Scholar
  33. Kaasik M, Sofiev M, Prank M, Ruuskanen T, Kukkonen J, Horrak U, Kulmala M (2011) Geographical origin of aerosol particles observed during the LAPBIAT measurement campaign in spring 2003 in Finnish Lapland. Boreal Environ Res 16:15–35Google Scholar
  34. Kroeker KJ, Micheli F, Gambi MC, Martz TR (2011) Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc Natl Acad Sci U S A 108:14515–14520. doi: 10.1073/pnas.1107789108 PubMedCentralCrossRefPubMedGoogle Scholar
  35. Lebreton B, Richard P, Radenac G, Bordes M, Breret M, Arnaud C, Mornet F, Blanchard GF (2009) Are epiphytes a significant component of intertidal Zostera noltii beds? Aquat Bot 91:82–90. doi: 10.1016/j.aquabot.2009.03.003 CrossRefGoogle Scholar
  36. Lewis ND, Breckels MN, Archer SD, Morozov A, Pitchford SD, Steinke M, Codling EA (2012) Grazing-induced production of DMS can stabilize food-web dynamics and promote the formation of phytoplankton blooms in a multitrophic plankton model. Biogeochemistry 110:303–313. doi: 10.1007/s10533-011-9649-0 CrossRefGoogle Scholar
  37. Maibam C, Fink P, Romano G, Buia MC, Gambi MC, Scipione MB, Patti FP, Lorenti M, Butera E, Zupo V (2014) Relevance of wound-activated compounds produced by diatoms as toxins and infochemicals for benthic invertebrates. Mar Biol 161:1639–1652. doi: 10.1007/s00227-014-2448-0 CrossRefGoogle Scholar
  38. Maibam C, Fink P, Romano G, Buia MC, Butera E, Zupo V (2015) Centropages typicus (Crustacea, Copepoda) reacts to volatile compounds produced by planktonic algae. Mar Ecol. doi: 10.1111/maec.12254 Google Scholar
  39. Martin S, Rodolfo-Metalpa R, Ransome E, Rowley S, Buia MC, Gattuso JP, Hall-Spencer J (2008) Effects of naturally acidified seawater on seagrass calcareous epibionts. Biol Lett 4:689–692. doi: 10.1098/rsbl.2008.0412 PubMedCentralCrossRefPubMedGoogle Scholar
  40. Matheron G (1969) Le krigeage universel. Les Cahiers Centre Morphologie Mathematique 1, Ecole des Mines de ParisGoogle Scholar
  41. Matheron G (1970) La théorie des variables régionalisées et ses applications. Les Cahiers Centre Morphologie Mathematique, 5, FontainebleauGoogle Scholar
  42. Mazzella L, Buia MC, Gambi MC, Lorenti M, Russo GF, Scipione MB, Zupo V (1992) Plant-animal trophic relationships in the Posidonia oceanica ecosystem of the Mediterranean Sea: a review. In: Keegan JF (ed) Plant-animal interactions in marine benthos. London, pp 165–188Google Scholar
  43. Monson RK, Grote R, Niinemets Ü, Schnitzler J-P (2012) Tansley review. Modeling the isoprene emission rate from leaves. New Phytol 195:541–559. doi: 10.1111/j.1469- 8137.2012.04204.x CrossRefPubMedGoogle Scholar
  44. Niinemets Ü, Kännaste A, Copolovic L (2013) Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Front Plant Sci 4:1–15. doi: 10.3389/fpls.2013.00262 CrossRefGoogle Scholar
  45. Pippen E, Nonaka M (1958) Notes - A convenient method for synthesizing normal aliphatic 2,4-dienals. J Org Chem 23:1580–1582CrossRefGoogle Scholar
  46. Pohnert G, Steinke M, Tollrian R (2007) Chemical cues, defense metabolites and the shaping of pelagic interspecific interactions. Trends Ecol Evol 22:198–204. doi: 10.1016/j.tree.2007.01.005 CrossRefPubMedGoogle Scholar
  47. Ricevuto E, Lorenti M, Patti FP, Scipione MB, Gambi MC (2012) Temporal trends of benthic invertebrate settlement along a gradient of ocean acidification at natural CO2 vents (Tyrrhenian Sea). Biol Mar Mediterr 19:49–52Google Scholar
  48. Ricevuto E, Kroeker KJ, Ferrigno F, Micheli F, Gambi MC (2014) Spatio-temporal variability of polychaete colonization at volcanic CO2 vents (Italy) indicates high tolerance to ocean acidification. Mar Biol. doi: 10.1007/s00227-014-2555-y Google Scholar
  49. Ricevuto E, Vizzini S, Gambi MC (2015) Ocean acidification effects on stable isotope signatures and trophic interactions of polychaete consumers and organic matter sources at a CO2 shallow vent system. J Exp Mar Biol Ecol 468:105–117. doi: 10.1016/j.jembe.2015.03.016 CrossRefGoogle Scholar
  50. Russo GF, Fraschetti S, Terlizzi A (2002) Population ecology and production of Bittium latreillii (Gastropoda, Cerithidae) in a Posidonia oceanica seagrass bed. Ital J Zool 69:215–222. doi: 10.1080/11250000209356462 CrossRefGoogle Scholar
  51. Scipione MB (2013) Do studies of functional groups give more insight to amphipod biodiversity? Crustaceana 86(7–8):955–1006. doi: 10.1163/15685403-00003209 CrossRefGoogle Scholar
  52. Sprinthall RC (2011) Basic Statistical Analysis. 9th Edition. Pearson Education GroupGoogle Scholar
  53. Steinke M, Malin G, Liss PS (2002) Trophic interactions in the sea: an ecological role for climate relevant volatiles? J Phycol 38:630–638. doi: 10.1046/j.1529-8817.2002.02057.x CrossRefGoogle Scholar
  54. Tedesco D (1996) Chemical and isotopic investigations of fumarolic gases from Ischia island (southern Italy): evidences of magmatic and crustal contribution. J Volcanol Geotherm Res 74:233–242. doi: 10.1016/S0377-0273(96)00030-3 CrossRefGoogle Scholar
  55. Thoms C, Schupp PJ (2008) Activated chemical defense in marine sponges - a case study on Aplysinella rhax. J Chem Ecol 34:1242–1252. doi: 10.1007/s10886-008-9518-z CrossRefPubMedGoogle Scholar
  56. Vos M, Vet LEM, Wackers FL, Middelburg JJ, van der Putten WH, Mooij WM, Heip CHR, van Donk E (2006) Infochemicals structure marine, terrestrial and freshwater food webs: implications for ecological informatics. Ecol Inf 1:23–32. doi: 10.1016/j.ecoinf.2005.06.001 CrossRefGoogle Scholar
  57. Weissburg MJ, Zimmer-Faust RK (1991) Ontogeny versus phylogeny in determining patterns of chemoreception: initial studies with fiddler crabs. Biol Bull 181:205–215CrossRefGoogle Scholar
  58. Wichard T, Poulet SA, Halsband-Lenk C, Albaina A, Harris R, Liu D, Pohnert G (2005) Survey of the chemical defense potential of diatoms: screening of fifty one species for alpha, beta, gamma, delta-unsaturated aldehydes. J Chem Ecol 31:949–958. doi: 10.1007/s10886-005-3615-z CrossRefPubMedGoogle Scholar
  59. Wyatt TD, Hardege JD, Terschak J (2014) Ocean acidification foils chemical signals. Science 346:176–176. doi: 10.1126/science.346.6206.176-a CrossRefPubMedGoogle Scholar
  60. Zhou T, Rebach S (1999) Chemosensory orientation of the rock crab Cancer irroratus. J Chem Ecol 25:315–329. doi: 10.1023/A:1020898830096 CrossRefGoogle Scholar
  61. Zupo V, Nelson WG (1999) Factors influencing the association patterns of Hippolyte zostericola and Palaemonetes intermedius (Decapoda: Natantia) with seagrasses of the Indian River Lagoon, Florida. Mar Biol 134:181–190CrossRefGoogle Scholar
  62. Zupo V, Buia MC, Lorenti M, Procaccini G (2006) Temporal variations in the spatial distribution of shoot density in a Posidonia oceanica meadow and patterns of genetic diversity. PSZNI: Mar Ecol 27:328–338. doi: 10.1111/j.1439-0485.2006.00133.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Valerio Zupo
    • 1
  • Chingoileima Maibam
    • 1
  • Maria Cristina Buia
    • 1
  • Maria Cristina Gambi
    • 1
  • Francesco Paolo Patti
    • 1
  • Maria Beatrice Scipione
    • 1
  • Maurizio Lorenti
    • 1
  • Patrick Fink
    • 2
  1. 1.Stazione Zoologica Anton DohrnCenter Villa Dohrn for Benthic EcologyIschiaItaly
  2. 2.Cologne Biocenter, Department of Aquatic Chemical EcologyUniversity of CologneKölnGermany

Personalised recommendations