Skip to main content
Log in

Wolbachia-Free Heteropterans Do Not Produce Defensive Chemicals or Alarm Pheromones

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

An Erratum to this article was published on 22 September 2015

Abstract

The true bugs, or heteropterans, are known for their widespread production of anti-predator chemicals and alarm pheromones in scent glands, a derived trait that constitutes one of the defining characters of the suborder Heteroptera and a potential novel trait that contributed to their diversification. We investigated whether symbiotic bacteria could be involved in the formation of these chemicals using Thasus neocalifornicus, a coreid bug that produces semiochemicals frequently found in other bugs. Using DNA phylogenetic methodology and experiments using antibiotics coupled with molecular techniques, we identified Wolbachia as the microorganism infecting the scent glands of this bug. Decreasing the level of Wobachia infection using antibiotics was correlated with a diminution of heteropteran production of defensive compounds and alarm pheromones, suggesting that this symbiotic bacterium might be implicated in the formation of chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aldrich JR (1988) Chemical ecology of the Heteroptera. Annu Rev Entomol 33:211–238

    Article  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1994) Curr protocols molec biol. Wiley, New York

    Google Scholar 

  • Baumann P (2005) Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol 59:155–189

    Article  CAS  PubMed  Google Scholar 

  • Brailovsky H, Schaefer CW, Barrera E, Packauskas RJ (1994) A revision of the genus Thasus (Hemiptera: Coreinae: Nematopodini). J NY Entomol Soc 102:318–343

    Google Scholar 

  • Brennan LJ, Haukedal JA, Earle JC, Keddie B, Harris L (2012) Disruption of redox homeostasis leads to oxidative DNA damage in spermatocytes of Wolbachia-infected Drosophila simulans. Insect Mol Biol 21:510–520

    Article  CAS  PubMed  Google Scholar 

  • Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience, New York

    Google Scholar 

  • Choi SY, Lim JW, Kuwano K, Kim JM, Kim H (2012) Reactive oxygen species mediate Jak2/Stat3 activation and IL-8 expression in pulmonary epithelial cells stimulated with lipid-associated membrane proteins from Mycoplasma pneumoniae. Inflamm Res 39:385–389

    Google Scholar 

  • De la Torre-Bueno RT, Ambrose WG (1936) Effects of the protective vapors of the Coreid bug Thasus gigas on a tarantula (Eurypelma sp.). Bull Brook Entomol Soc 31:184

    Google Scholar 

  • Dobson SL, Bourtzis K, Braig HR, Jones BF, Zhou W, Rousset F, O’Neill SL (1999) Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochem Mol Biol 29:153–160

    Article  CAS  PubMed  Google Scholar 

  • Eliyahu D, Ceballos RA, Saeidi V, Becerra JX (2012) Sinergism versus potency in the defense secretions of Pentatomorpha (Heteroptera) nymphs. J Chem Ecol 38:1975–1978

    Article  Google Scholar 

  • Fávaro CF, de Rodrigues MACM, Aldrich JR (2011) Identification of semiochemicals in adults and nymphs of the stink bug Pallantia macunaima Grazia (Hemiptera: Pentatomidae). J Braz Chem Soc 22:58–64

    Article  Google Scholar 

  • Fenton A, Johnson KN, Brownlie JC, Hurst GDD (2011) Solving the Wolbachia paradox: modeling the tripartite interaction between host, Wolbachia, and a natural enemy. Am Nat 178:333–342

    Article  PubMed  Google Scholar 

  • Hosokawa T, Koga R, Kikuchi Y, Meng XY, Fukatsu T (2010) Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci U S A 107:769–774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist FR (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Hurst GD, Jiggins FM (2000) Male-killing bacteria in insects: mechanisms, incidence, and implications. Emerg Infect Dis 6:329–336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kasai H, Maekawa M, Hachisuka K, Takahashi Y, Nakamura H, Sawa R, Matsui S, Tatsuda T (2005) 4-Oxo-2-Hexenal, a mutagen formed by ω-3 fat peroxidation, causes DNA adduct formation in mouse organs. Ind Health 43:699–701

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi Y, Fukatsu T (2003) Diversity of Wolbachia endosymbionts in heteropteran bugs. Appl Environ Microbiol 69:6082–6090

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kikuchi Y, Meng XY, Fukatsu T (2005) Gut symbiotic bacteria of the genus Burkholderia in the broad-headed bugs Riptortus clavatus and Leptocorisa chinensis (Heteroptera: Alydidae). Appl Environ Microbiol 71:4035–4043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kikuchi Y, Hosokawa T, Fukatsu T (2007) Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol 73:4308–4316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kikuchi Y, Hosokawa T, Fukatsu T (2011) An ancient but promiscuous host-symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J 5:446–460

    Article  PubMed Central  PubMed  Google Scholar 

  • Kuechler SM, Renz P, Dettner K, Kehl S (2012) Diversity of bacterial endosymbionts of Ligaeoid bugs of the families Blissidae and Lygaeidae (Hemiptera: Heteroptera: Laygaeoidea). Appl Environ Microbiol 78:2648–2659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lopanik NB (2014) Chemical defensive symbioses in the marine environment. Funct Ecol 28:328–340

    Article  Google Scholar 

  • Machtelinckx T, Van Leeuwen T, Vanholme B, Gehesquiere B, Dermauw W, Vandekerkhove B, Gheysen G, De Clercq P (2009) Wolbachia induces strong cytoplasmic incompatibility in the predatory bug Macrolophus pygmaeus. Insect Mol Biol 18:373–381

    Article  CAS  PubMed  Google Scholar 

  • Matsuura Y, Kikuchi Y, Meng XY, Koga R, Fukatsu T (2012) Novel clade of alphaproteobacterial endosymbionts associated with stinkbugs and other arthropods. Appl Environ Microbiol 78:4149–4156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Millar JG (2005) Pheromones of true bugs. Top Curr Chem 240:37–84

    CAS  Google Scholar 

  • Noge K, Kimura H, Abe M, Becerra JX, Tamogami S (2012a) Antibacterial activity of 4-Oxo-(E)-2-hexenal from adults and nymphs of the heteropteran, Dolycoris baccarum (Heteroptera: Pentatomidae). Biosci Biotechnol Biochem 76:1975–1978

    Article  CAS  PubMed  Google Scholar 

  • Noge K, Prudic KL, Becerra JX (2012b) Defensive roles of heteropteran (E)-2-alkenals and related compounds. J Chem Ecol 38:1050–1056

    Article  PubMed  Google Scholar 

  • Oliver KM, Moran NA (2009) Defensive symbionts in aphids and other insects. In: White JF, Torres MS (eds) Defensive mutualism in microbial symbiosis. CRC Press, New York

    Google Scholar 

  • Oliver KM, Noge K, Huang EM, Campos JM, Becerra JX, Hunter MS (2012) Parasitic wasp responses to symbiont-based defense in aphids. BMC Biol 10:11

    Article  PubMed Central  PubMed  Google Scholar 

  • Olivier-Espejel S, Sabree ZL, Noge K, Becerra JX (2011) Gut microbiota in nymph and adults of the Giant Mesquite Bug (Thasus neocalifornicus) (Heteroptera: Coreidae) is dominated by Burkholderia acquired de novo every generation. Appl Environ Microbiol 40:1102–1110

    Google Scholar 

  • Osborne SE, Iturbe-Ormaetxe I, Borwnlie JC, O’Neill SL, Johnson KN (2012) Antiviral protection and the importance of Wolbachia density and tissue tropism in Drosophila simulans. Appl Environ Microbiol 78:6922–6929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pan X, Zhou G, Bian G, Lu P, Raikhel AS, Xi Z (2011) Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A 109:E23–E31

    Article  PubMed Central  PubMed  Google Scholar 

  • Prudic KL, Noge K, Becerra JX (2008) Adults and nymphs de not smell the same: the different defensive compounds on the Giant Mesquite Bug (Thasus neocalifornicus: Coreidae). J Chem Ecol 34:734–741

    Article  CAS  PubMed  Google Scholar 

  • Schaefer CW (2003) Prosorryncha. In: Resh VH, Carde RT (eds) Encyclopedia of Insects. Academic, China

    Google Scholar 

  • Spickett CM (2013) The lipid peroxidation product 4-hydroxy-nonenal: advances in chemistry and analysis. Redox Biol 1:145–152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Staddon BW (1979) The scent glands of Heteroptera. Adv Insect Physiol 14:351–418

    Article  CAS  Google Scholar 

  • Wheeler WC, Schuh RT, Bang R (1993) Cladistic relationships among higher groups of Heteroptera: congruence between morphological and molecular data sets. Entomol Scand 24:121–137

    Article  Google Scholar 

  • White JA, Kelly SE, Cockburn SN, Perlman SJ, Hunter MS (2011) Endosymbiont consts and benefits in a parasitoid infected with both Wolbachia and Cardinium. Heredity 106:585–591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith X. Becerra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becerra, J.X., Venable, G.X. & Saeidi, V. Wolbachia-Free Heteropterans Do Not Produce Defensive Chemicals or Alarm Pheromones. J Chem Ecol 41, 593–601 (2015). https://doi.org/10.1007/s10886-015-0596-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-015-0596-4

Keywords

Navigation