Journal of Chemical Ecology

, Volume 41, Issue 6, pp 513–519 | Cite as

From Leaf Metabolome to In Vivo Testing: Identifying Antifeedant Compounds for Ecological Studies of Marsupial Diets

  • Karen J. MarshEmail author
  • Baofa Yin
  • Inder Pal Singh
  • Isha Saraf
  • Alka Choudhary
  • Jessie Au
  • David J. Tucker
  • William J. Foley


Identifying specific plant secondary metabolites that influence feeding behavior can be challenging, but a solid understanding of animal preferences can guide efforts. Common brushtail possums (Trichosurus vulpecula) predominantly eat Eucalyptus species belonging to the subgenus Symphyomyrtus, and avoid eating those belonging to the Monocalyptus subgenus (also called subgenus Eucalyptus). Using an unbiased 1H NMR metabolomics approach, a previous study identified unsubstituted B ring flavanones in most species of monocalypts examined, whereas these compounds were absent from symphyomyrtles. We hypothesised that unsubstituted B ring flavanones act as feeding deterrents for common brushtail possums. In the current study, we tested this hypothesis by comparing how much possums ate of a basal diet, with diets containing one of four structurally related compounds; pinocembrin, flavanone (unsubstituted B ring flavanones), chrysin (the flavone analogue of pinocembrin), and naringenin (a flavanone with B ring substitution). We found that pinocembrin and flavanone deterred feeding relative to the basal diet, but that chrysin and naringenin did not at equivalent concentrations. Thus, unsubstituted B-ring flavanones may explain why brushtail possums avoid eating monocalypt species. Furthermore, small differences in the structure of secondary compounds can have a large impact on antifeedant properties. These results demonstrate that metabolomics can be a valuable tool for ecologists seeking to understand herbivore feeding preferences.


Pinocembrin Flavanone Eucalyptus Plant secondary metabolites Herbivore Metabolomics 



We thank Hannah Windley for help with the capture and care of possums, and Dr Teresa Neeman from the ANU Statistical Consulting Unit for statistical advice. This work was supported by grants from the Australian Research Council to KJM (DE120101263) and WJF (DP0986142). Animal work was approved by the Australian National University Animal Experimentation Ethics Committee (A2012/29) and conforms with the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes.


  1. Andrew RL (2005) Marker-based quantitative genetics in the wild?: The heritability and genetic correlation of chemical defenses in Eucalyptus. Genetics 171:1989–1998. doi: 10.1534/genetics.105.042952 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Andrew RL, Peakall R, Wallis IR, Foley WJ (2007) Spatial distribution of defense chemicals and markers and the maintenance of chemical variation. Ecology 88:716–728PubMedCrossRefGoogle Scholar
  3. Austin MP, Cunningham RB, Wood JT (1983) The subgeneric composition of eucalypt forest stands in a region of south-eastern Australia. Aust J Bot 31:63–71CrossRefGoogle Scholar
  4. Bick IRC, Brown RB, Hillis WE (1972) Three flavanones from leaves of Eucalyptus sieberi. Aust J Chem 25:449–451CrossRefGoogle Scholar
  5. Boyle R, McLean S, Foley WJ, Davies NW (1999) Comparative metabolism of dietary terpene, p-cymene, in generalist and specialist folivorous marsupials. J Chem Ecol 25:2109–2126. doi: 10.1023/a:1021092908058 CrossRefGoogle Scholar
  6. Bryant JP, Wieland GD, Reichardt PB, Lewis VE, McCarthy MC (1983) Pinosylvin methyl-ether deters snowshoe hare feeding on green alder. Science 222:1023–1025. doi: 10.1126/science.222.4627.1023 PubMedCrossRefGoogle Scholar
  7. Clark L, Shah P (1994) Tests and refinements of a general structure-activity model for avian repellents. J Chem Ecol 20:321–339PubMedCrossRefGoogle Scholar
  8. Conde E, Cadahia E, Garcia-Vallejo MC (1995) HPLC analysis of flavonoids and phenolic acids and aldehydes in Eucalyptus spp. Chromatographia 41:657–660CrossRefGoogle Scholar
  9. DeGabriel JL, Moore BD, Foley WJ, Johnson CN (2009) The effects of plant defensive chemistry on nutrient availability predict reproductive success in a mammal. Ecology 90:711–719PubMedCrossRefGoogle Scholar
  10. Diaz Napal GN, Carpinella MC, Palacios SM (2009) Antifeedant activity of ethanolic extract from Flourensia oolepis and isolation of pinocembrin as its active principle compound. Bioresour Technol 100:3669–3673. doi: 10.1016/j.biortech.2009.02.050 PubMedCrossRefGoogle Scholar
  11. Enge S, Nylund GM, Harder T, Pavia H (2012) An exotic chemical weapon explains low herbivore damage in an invasive alga. Ecology 93:2736–2745PubMedCrossRefGoogle Scholar
  12. Hillis WE (1966) Polyphenols in the leaves of Eucalyptus L’Herit: a chemotaxonomic survey-I. Introduction and a study of the series Globulares. Phytochemistry 5:1075–1090CrossRefGoogle Scholar
  13. Hillis WE (1967) Polyphenols in the leaves of Eucalyptus: a chemotaxonomic survey-II. The sections Renantheroideae and Renantherae. Phytochemistry 6:259–274CrossRefGoogle Scholar
  14. Jensen LM, Wallis IR, Marsh KJ, Moore BD, Wiggins NL, Foley WJ (2014) Four species of arboreal folivore show differential tolerance to a secondary metabolite. Oecologia. doi: 10.1007/s00442-014-2997-4 PubMedGoogle Scholar
  15. Kimble B, Li KM, Valtchev P, Higgins DP, Krockenberger MB, Govendir M (2014) In vitro hepatic microsomal metabolism of meloxicam in koalas (Phascolarctos cinereus), brushtail possums (Trichosurus vulpecula), ringtail possums (Pseudocheirus peregrinus), rats (Rattus norvegicus) and dogs (Canis lupus familiaris). Comp Biochem Physiol C 161:7–14. doi: 10.1016/j.cbpc.2013.12.002 Google Scholar
  16. Lang KL, Deagosto E, Zimmermann LA, Machado VR, Campos Bernardes LS, Schenkel EP, Javier Duran F, Palermo J, Rossini C (2013) Chemical modification produces species-specific changes in cucurbitacin antifeedant effect. J Agric Food Chem 61:5534–5539. doi: 10.1021/jf4002457 PubMedCrossRefGoogle Scholar
  17. Lawler IR, Foley WJ, Pass GJ, Eschler BM (1998) Administration of a 5HT3 receptor antagonist increases the intake of diets containing Eucalyptus secondary metabolites by marsupials. J Comp Physiol B 168:611–618. doi: 10.1007/s003600050183 PubMedCrossRefGoogle Scholar
  18. Lawler IR, Eschler BM, Schliebs DM, Foley WJ (1999) Relationship between chemical functional groups on Eucalyptus secondary metabolites and their effectiveness as marsupial antifeedants. J Chem Ecol 25:2561–2573CrossRefGoogle Scholar
  19. Li C-H, Liu Y, Hua J, Luo S-H, Li S-H (2014) Peltate glandular trichomes of Colquhounia seguinii harbor new defensive clerodane diterpenoids. J Integr Plant Biol 56:928–940. doi: 10.1111/jipb.12242 PubMedCrossRefGoogle Scholar
  20. Marsh KJ, Foley WJ, Cowling A, Wallis IR (2003a) Differential susceptibility to Eucalyptus secondary compounds explains feeding by the common ringtail (Pseudocheirus peregrinus) and common brushtail possum (Trichosurus vulpecula). J Comp Physiol B 173:69–78PubMedGoogle Scholar
  21. Marsh KJ, Wallis IR, Foley WJ (2003b) The effect of inactivating tannins on the intake of Eucalyptus foliage by a specialist Eucalyptus folivore (Pseudocheirus peregrinus) and a generalist herbivore (Trichosurus vulpecula). Aust J Zool 51:31–42CrossRefGoogle Scholar
  22. Marsh KJ, Moore BD, Wallis IR, Foley WJ (2014) Feeding rates of a mammalian browser confirm the predictions of a ‘foodscape’ model of its habitat. Oecologia 174:873–882. doi: 10.1007/s00442-013-2808-3 PubMedCrossRefGoogle Scholar
  23. Moore BD, Wallis IR, Marsh KJ, Foley WJ (2004) The role of nutrition in the conservation of the marsupial folivores of eucalypt forests. In: Lunney D (ed) Conservation of Australia’s forest fauna, 2nd edn. Royal Zoological Society of New South Wales, Mossman, pp 549–575CrossRefGoogle Scholar
  24. Moore BD, Foley WJ, Wallis IR, Cowling A, Handasyde KA (2005) Eucalyptus foliar chemistry explains selective feeding by koalas. Biol Lett 1:64–67. doi: 10.1098/rsbl.2004.0255 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Moore BD, Lawler IR, Wallis IR, Beale CM, Foley WJ (2010) Palatability mapping: a koala’s eye view of spatial variation in habitat quality. Ecology 91:3165–3176PubMedCrossRefGoogle Scholar
  26. Morimoto M, Tanimoto K, Nakano S, Ozaki T, Nakano A, Komai K (2003) Insect antifeedant activity of lavones and chromones against Spodoptera litura. J Agric Food Chem 51:389–393PubMedCrossRefGoogle Scholar
  27. Nolte D, Mason J, Clark L (1993) Nonlethal rodent repellents: differences in chemical structure and efficacy from nonlethal bird repellent. J Chem Ecol 19:2019–2027PubMedCrossRefGoogle Scholar
  28. Pannala AS, Chan TS, O’Brien PJ, Rice-Evans CA (2001) Flavonoid B-ring chemistry and antioxidant activity: fast reaction kinetics. Biochem Biophys Res Commun 282:1161–1168. doi: 10.1006/bbrc.2001.4705 CrossRefGoogle Scholar
  29. Pass DM, Foley WJ, Bowden B (1998) Vertebrate herbivory on Eucalyptus - identification of specific feeding deterrents for common ringtail possums (Pseudocheirus peregrinus) by bioassay-guided fractionation of Eucalyptus ovata foliage. J Chem Ecol 24:1513–1527. doi: 10.1023/a:1020911800847 CrossRefGoogle Scholar
  30. Reichardt PB, Bryant JP, Mattes BR, Clausen TP, Chapin FS, Meyer M (1990) Winter chemical defnse of Alaskan balsam poplar against snowshoe hares. J Chem Ecol 16:1941–1959. doi: 10.1007/bf01020507 PubMedCrossRefGoogle Scholar
  31. Saraf I, Choudhary A, Sharma RJ, Dandi K, Marsh KJ, Foley WJ, Singh IP (2015) Extraction of pinocembrin from leaves of different species of Eucalyptus and its quantitative analysis by qNMR and HPTLC. Nat Prod Commun 10:379–382Google Scholar
  32. Simmen B, Tarnaud L, Marez A, Hladik A (2014) Leaf chemistry as a predictor of primate biomass and the mediating role of food selection: a case study in a folivorous lemur (Propithecus verreauxi). Am J Primatol 76:563–575. doi: 10.1002/ajp.22249 PubMedCrossRefGoogle Scholar
  33. Taylor RB, Lindquist N, Kubanek J, Hay ME (2003) Intraspecific variation in palatability and defensive chemistry of brown seaweeds: effects on herbivore fitness. Oecologia 136:412–423. doi: 10.1007/s00442-003-1280-x PubMedCrossRefGoogle Scholar
  34. Tucker DJ, Wallis IR, Bolton JM, Marsh KJ, Rosser AA, Brereton IM, Nicolle D, Foley WJ (2010) A metabolomic approach to identifying chemical mediators of mammal–plant interactions. J Chem Ecol 36:727–735. doi: 10.1007/s10886-010-9803-5 PubMedCrossRefGoogle Scholar
  35. Villalba JJ, Burritt EA, St Clair SB (2014) Aspen (Populus tremuloides Michx.) intake and preference by mammalian herbivores: the role of plant secondary compounds and nutritional context. J Chem Ecol 40:1135–1145. doi: 10.1007/s10886-014-0507-0 PubMedCrossRefGoogle Scholar
  36. Vourc’h G, Russell J, Martin JL (2002) Linking deer browsing and terpene production among genetic identities in Chamaecyparis nootkatensis and Thuja plicata (Cupressaceae). J Hered 93:370–376. doi: 10.1093/jhered/93.5.370 CrossRefGoogle Scholar
  37. Watkins RW, Lumley JA, Gill EL, Bishop JD, Langton SD, MacNicoll AD, Price NR, Drew MGB (1999) Quantitative structure-activity relationships (QSAR) of cinnamic acid bird repellents. J Chem Ecol 25:2825–2845. doi: 10.1023/a:1020863927061 CrossRefGoogle Scholar
  38. Wollenweber E, Kohorst G (1981) Epicuticular leaf flavonoids from Eucalyptus species and from Kalmia latifolia. Z Naturforsch C 36:913–915Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Karen J. Marsh
    • 1
    Email author
  • Baofa Yin
    • 1
  • Inder Pal Singh
    • 2
  • Isha Saraf
    • 2
  • Alka Choudhary
    • 2
  • Jessie Au
    • 1
  • David J. Tucker
    • 3
    • 4
  • William J. Foley
    • 1
  1. 1.Research School of BiologyAustralian National UniversityCanberraAustralia
  2. 2.Department of Natural ProductsNational Institute of Pharmaceutical Education and ResearchNagarIndia
  3. 3.NSW Department of Primary Industry, Beef Industry CentreLivestock Methane Research GroupArmidaleAustralia
  4. 4.School of Science & TechnologyUniversity of New EnglandArmidaleAustralia

Personalised recommendations