Skip to main content
Log in

Evidence for Passive Chemical Camouflage in the Parasitic Mite Varroa destructor

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Social insect colonies provide a stable and safe environment for their members. Despite colonies being heavily guarded, parasites have evolved numerous strategies to invade and inhabit these hostile places. Two such strategies are (true) chemical mimicry via biosynthesis of host odor, and chemical camouflage, in which compounds are acquired from the host. The ectoparasitic mite Varroa destructor feeds on hemolymph of its honey bee host, Apis mellifera. The mite’s odor closely resembles that of its host, which allows V. destructor to remain undetected as it lives on the adult host during its phoretic phase and while reproducing on the honeybee brood. During the mite life cycle, it switches between host adults and brood, which requires it to adjust its profile to mimic the very different odors of honey bee brood and adults. In a series of transfer experiments, using bee adults and pupae, we tested whether V. destructor changes its profile by synthesizing compounds or by using chemical camouflage. We show that V. destructor required direct access to host cuticle to mimic its odor, and that it was unable to synthesize host-specific compounds itself. The mite was able to mimic host odor, even when dead, indicating a passive physico-chemical mechanism of the parasite cuticle. The chemical profile of V. destructor was adjusted within 3 to 9 h after switching hosts, demonstrating that passive camouflage is a highly efficient, fast and flexible way for the mite to adapt to a new host profile when moving between different host life stages or colonies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akino T, Yamaoka R (1998) Chemical mimicry in the root aphid parasitoid Paralipsis eikoae Yasumatsu (Hymenoptera: Aphidiidae) of the aphid-attending ant Lasius sakagamii Yamauchi & Hayashida (Hymenoptera: Formicidae). Chemoecology 8:153–161

    Article  CAS  Google Scholar 

  • Akino T, Knapp JJ, Thomas JA, Elmes GW (1999) Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc R Soc B 266:1419–1426

    Article  PubMed Central  CAS  Google Scholar 

  • Arnold G, Quenet B, Masson C (2000) Influence of social environment on genetically based subfamily signature in the honeybee. J Chem Ecol 26:2321–2333

    Article  CAS  Google Scholar 

  • Aumeier P, Rosenkranz P, Francke W (2002) Cuticular volatiles, attractivity of worker larvae and invasion of brood cells by Varroa mites. A comparison of Africanized and European honey bees. Chemoecology 12:65–75

    Article  CAS  Google Scholar 

  • Bagnères A-G, Lorenzi MC (2010) Chemical deception/mimicry using cuticular hydrocarbons. In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. University Press, Cambridge, pp 282–324

    Chapter  Google Scholar 

  • Blomquist GJ, Bagnères A-G (2010) Insect hydrocarbons: biology, biochemistry, and chemical ecology. University Press, Cambridge

    Book  Google Scholar 

  • Buchwald R, Breed MD (2005) Nestmate recognition cues in a stingless bee, Trigona fulviventris. Anim Behav 70:1331–1337

    Article  Google Scholar 

  • Buckner JS, Pitts-singer TL, Guedot C, Hagen MM, Fatland CL, Kemp WP (2009) Cuticular lipids of female solitary bees, Osmia lignaria Say and Megachile rotundata (F.) (Hymenoptera: Megachilidae). Comp Biochem Physiol B 153:200–205

    Article  PubMed  Google Scholar 

  • Cini A, Bruschini C, Signorotti L, Pontieri L, Turillazzi S, Cervo R (2011) The chemical basis of host nest detection and chemical integration in a cuckoo paper wasp. J Exp Biol 214:3698–3703

    Article  PubMed  Google Scholar 

  • de Renobales M, Nelson DR, MacKay ME, Zamboni AC, Blomquist GJ (1988) Dynamics of hydrocarbon biosynthesis and transport to the cuticle during pupal and early adult development in the cabbage looper Trichoplusia ni (Lepidoptera: Noctuidae). Insect Biochem 18:607–613

    Article  Google Scholar 

  • Dettner K, Liepert C (1994) Chemical mimicry and camouflage. Annu Rev Entomol 39:129–154

    Article  CAS  Google Scholar 

  • Everaerts C, Farine JP, Brossut R (1997) Changes of species specific cuticular hydrocarbon profiles in the cockroaches Nauphoeta cinerea and Leucophaea maderae reared in heterospecific groups. Entomol Exp Appl 85:145–150

    Article  CAS  Google Scholar 

  • Falcón T, Ferreira-Caliman MJ, Nunes FMF, Tanaka ED, do Nascimento FS, Bitondi MMG (2014) Exoskeleton formation in Apis mellifera: cuticular hydrocarbons profiles and expression of desaturase and elongase genes during pupal and adult development. insect. J Biochem Mol Biol 50:68–81

    Google Scholar 

  • Franks N, Blum MS, Smith R, Allies AB (1990) Behavior and chemical disguise of cuckoo ant Leptothorax kutteri in relation to its host Leptothorax acervorum. J Chem Ecol 16:1431–1444

    Article  CAS  PubMed  Google Scholar 

  • Gibbs A (1995) Physical properties of insect cuticular hydrocarbons: model mixtures and lipid interactions. Comp Biochem Physiol B 112:667–672

    Article  Google Scholar 

  • Hojo MK, Wada-Katsumata A, Akino T, Yamaguchi S, Ozaki M, Yamaoka R (2009) Chemical disguise as particular caste of host ants in the ant inquiline parasite Niphanda fusca (Lepidoptera: Lycaenidae). Proc R Soc B 276:551–558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Howard RW, McDaniel CA, Blomquist GJ (1982) Chemical mimicry as an integrating mechanism for three termitophiles associated with Reticulitermes virginicus (Banks). Psyche 89:157–167

    Article  Google Scholar 

  • Howard RW, Stanley-Samuelson DW, Akre RD (1990) Biosynthesis and chemical mimicry of cuticular hydrocarbons from the obligate predator, Microdon albicomatus Novak (Diptera: Syrphidae) and its ant prey, Myrmica incompleta Provancher (Hymenoptera: Formicidae). J Kansas Entomol Soc 63:437–443

    Google Scholar 

  • Ichinose K, Lenoir A (2009) Ontogeny of hyrdrocarbon profiles in the ant Aphanogaster senilis and effects of social isolation. C R Biologies 332:697–703

    Article  CAS  PubMed  Google Scholar 

  • Jeral JM, Breed MD, Hibbard BE (1997) Thief ants have reduced quantities of cuticular compounds in a ponerine ant, Ectatomma ruidum. Physiol Entomol 22:207–211

    Article  CAS  Google Scholar 

  • Kaib M, Jmhasly P, Wilfert L, Durka W, Franke S, Francke W, Leuthold RH, Brandl R (2004) Cuticular hydrocarbons and aggression in the termite Macrotermes subhyalinus. J Chem Ecol 30:365–385

    Article  CAS  PubMed  Google Scholar 

  • Kather R, Drijfhout FP, Martin SJ (2011) Task group differences in cuticular lipids in the honey bee Apis mellifera. J Chem Ecol 37:205–212

    Article  CAS  PubMed  Google Scholar 

  • Kather R, Drijfhout F P, Shemilt S, Martin S J (2015) Evidence for colony-specific differences in chemical mimicry in the parasitic mite Varroa destructor. Chemecology (accepted)

  • Kraus B, Koeniger N, Fuchs S (1986) Unterscheidung zwischen Bienen verschiedenen Alters durch Varroa jacobsoni Oud. und Bevorzugung von Ammenbienenvolk. Apidologie 17:257–266

    Article  Google Scholar 

  • Kroiss J, Schmitt T, Strohm E (2009) Low level of cuticular hydrocarbons in a parasitoid of a solitary digger wasp and its potential for concealment. J Entomol Sci 12:9–16

    Article  Google Scholar 

  • Lenoir A, Malosse C, Yamaoka R (1997) Chemical mimicry between parasitic ants of the genus Formicoxenus and their host Myrmica (Hymenoptera, Formicidae). Biochem Syst Ecol 25:379–389

    Article  CAS  Google Scholar 

  • Lenoir A, Fresneau D, Errard C, Hefetz A (1999) The individuality and the colonial identity in ants: the emergence of the social representation concept. In: Detrain C, Deneubourg JL, Pasteels J (eds) Information processing in social insects. Birkhäuser Verlag, Basel, pp 219–237

    Chapter  Google Scholar 

  • Lenoir A, D’Ettorre P, Errard C, Hefetz A (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:573–599

    Article  CAS  PubMed  Google Scholar 

  • Lorenzi MC, Bagnères AG (2002) Concealing identity and mimicking hosts: a dual chemical strategy for a single social parasite? (Polistes atrimandibularis, Hymenoptera: Vespidae). Parasitology 125:507–512

    Article  CAS  PubMed  Google Scholar 

  • Martin SJ, Drijfhout FP (2009) A review of ant cuticular hydrocarbons. J Chem Ecol 35:1151–1161

    Article  CAS  PubMed  Google Scholar 

  • Martin C, Salvy M, Provost ÉM, Bagnéres AG, Roux M, Crauser D, Clement JL, Le Conte Y (2001) Variations in chemical mimicry by the ectoparasitic mite Varroa jacobsoni according to the developmental stage of the host honey-bee Apis mellifera. Insect Biochem Mol Biol 31:365–379

    Article  CAS  PubMed  Google Scholar 

  • Martin SJ, Vitikainen E, Shemilt S, Drijfhout FP, Sundstrom L (2013) Sources of variation in cuticular hydrocarbons in the ant Formica exsecta? J Chem Ecol 39:1415–1423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nation JL, Sanfor MT, Milne K (1992) Cuticular hydrocarbons from Varroa jacobsoni. Exp Appl Acarol 16:331–344

    Article  CAS  Google Scholar 

  • Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invert Pathol 103:S96–S119

    Article  Google Scholar 

  • Turillazzi S, Sledge MF, Dapporto L, Landi M, Fanelli D, Fondelli L, Zanetti P, Dani F (2004) Epicuticular lipids and fertility in primitively social wasps (Hymenoptera Stenogastrinae). Physiol Entomol 29:464–471

    Article  CAS  Google Scholar 

  • Uboni A, Bagnères A-G, Christidès J-P, Lorenziet MG (2012) Cleptoparasites, social parasites and a common host: chemical insignificance for visiting host nests, chemical mimicry for living in. J Insect Physiol 58:1259–1264

    Article  CAS  PubMed  Google Scholar 

  • Vander Meer RK, Wojcik DP (1982) Chemical Mimicry in the Myrmecophilous beetle Myrmecaphodius excavaticollis. Science 218:806–808

    Article  CAS  Google Scholar 

  • Vauchot B, Provost E, Bagnères A-G, Riviere G, Roux M, Clément J-L (1998) Differential adsorption of allospecific hydrocarbons by the cuticles of two termite species, Reticulitermes santonensis and R. lucifugus grassei, Living in a Mixed Colony. J Insect Physiol 44:59–66

  • Vienne C, Soroker V, Hefetz A (1995) Congruency of hydrocarbon patterns in heterospecific groups of ants: transfer and/or biosynthesis ? Insectes Sociaux 42:267--277

  • von Beeren C, Schulz S, Hashim R, Witte V (2011) Acquisition of chemical recognition cues facilitates integration into ant societies. BMC Ecol 11:30

    Article  PubMed  Google Scholar 

  • von Beeren C, Hashim R, Witte V (2012) The social integration of a myrmecophilous spider does not depend exclusively on chemical mimicry. J Chem Ecol 38:262–271

    Article  CAS  Google Scholar 

  • Wilson EO (1971) The insect societies. Belknap, Harvard

    Google Scholar 

Download references

Acknowledgments

We thank the Kings Lynn, Sheffield and Barnsley Beekeepers for providing mites and Roger Butlin of Sheffield University for comments along with the two excellent reviews. This research was funded by funding from BBSRC (BB/G017077/1), and the East Anglian Beekeepers (EARS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Martin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kather, R., Drijfhout, F.P., Shemilt, S. et al. Evidence for Passive Chemical Camouflage in the Parasitic Mite Varroa destructor . J Chem Ecol 41, 178–186 (2015). https://doi.org/10.1007/s10886-015-0548-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-015-0548-z

Keywords

Navigation