Skip to main content

The Effect of Dietary Fatty Acids on the Cuticular Hydrocarbon Phenotype of an Herbivorous Insect and Consequences for Mate Recognition

Abstract

The cuticular hydrocarbon (CHC) profile of the mustard leaf beetle Phaedon cochleariae is known to mediate mate recognition and is dependent on food plant species; beetles previously were shown to prefer mates that fed on the same plant species and which have a similar CHC pattern. In order to elucidate whether the pattern of ingested fatty acids affects the CHC pattern of P. cochleariae adults, we fed beetles: (a) with two different host plant species differing in fatty acid profile; and (b) artificial diets differing mainly in their composition of mono-, di-, and triunsaturated fatty acids. Analyses of the beetles’ CHCs revealed that ingestion of different fatty acid blends results in quantitative effects on the beetle’s straight-chain and methyl-branched CHCs. Interestingly, CHC patterns of males and females were affected differently by ingestion of fatty acids. In contrast to the effect on mating caused by feeding on different host plant species, beetles that were fed with different artificial diets, leading to different beetle CHC profiles, did not exhibit mating preference. We suggest that the occurrence of CHC-dependent assortative mating in P. cochleariae does not depend on the dietary fatty acids offered to the beetles in this study, but on other food constituents that affect CHC biosynthesis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Billeter J-C, Atallah J, Krupp JJ, Millar JG, Levine JD (2009) Specialized cells tag sexual and species identity in Drosophila melanogaster. Nature 461:987–991

    CAS  PubMed  Article  Google Scholar 

  • Blailock TT, Blomquist GJ, Jackson LL (1976) Biosynthesis of 2-methylalkanes in the crickets Nemobius fasciatus and Gryllus pennsylvanicus. Biochem Biophys Res Commun 68:841–849

    CAS  PubMed  Article  Google Scholar 

  • Blaul B, Ruther J (2011) How parasitoid females produce sexy sons: a causal link between oviposition preference, dietary lipids, and mate choice in Nasonia. Proc R Soc B 278:3286–3293

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Blomquist GJ (2010) Biosynthesis of cuticular hydrocarbons. In: Blomquist GJ, Bagnères AG (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 35–52

    Chapter  Google Scholar 

  • Boughman JW (2001) Divergent sexual selection enhances reproductive isolation in sticklebacks. Nature 411:944–948

    CAS  PubMed  Article  Google Scholar 

  • Boughman JW (2002) How sensory drive can promote speciation. Trends Ecol Evol 17:571–577

    Article  Google Scholar 

  • Brazner JC, Etges WJ (1993) Pre-mating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. II. Effects of larval substrates on time to copulation, mate choice and mating propensity. Evol Ecol 7:605–624

    Article  Google Scholar 

  • Browse J, McCourt P, Somerville C (1986) Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue. Anal Biochem 152:141–145

    CAS  PubMed  Article  Google Scholar 

  • Chase J, Jurenka RA, Schal C, Halarnkar PP, Blomquist GJ (1990) Biosynthesis of methyl branched hydrocarbons in the German cockroach Blattella germanica (L.) (Orthoptera, Blattellidae). Insect Biochemistry 20:149–156

    CAS  Article  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer, Sunderland

    Google Scholar 

  • Dawkins R (1982) The extended phenotype. W.H. Freeman, San Francisco

    Google Scholar 

  • Dillwith JW, Nelson JH, Pomonis JG, Nelson DR, Blomquist GJ (1982) A 13C-NMR study of methyl-branched hydrocarbon synthesis in the housefly. J Biol Chem 257:11305–11314

    CAS  PubMed  Google Scholar 

  • Dwyer LA, Blomquist GJ, Nelson JH, Pomonis JG (1981) A 13C-NMR study of the biosynthesis of 3-methylpentacosane in the American cockroach. Biochim Biophys Acta 663:536–544

    CAS  PubMed  Article  Google Scholar 

  • Egan SP, Funk DJ (2009) Ecologically dependent postmating isolation between sympatric host forms of Neochlamisus bebbianae leaf beetles. Proc Natl Acad Sci U S A 106:19426–19431

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Etges WJ (1992) Premating isolation is determined by larval substrates in cactophilic Drosophila mojavensis. Evolution 46:1945–1950

    Article  Google Scholar 

  • Etges WJ, Veenstra CL, Jackson LL (2006) Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. VII. Effects of larval dietary fatty acids on adult epicuticular hydrocarbons. J Chem Ecol 32:2629–2646

    CAS  PubMed  Article  Google Scholar 

  • Fitzpatrick BM (2012) Underappreciated consequences of phenotypic plasticity for ecological speciation. Int J Ecol Article ID 256017

  • Francis GW, Veland K (1981) Alkylthiolation for the determination of double-bond positions in linear alkenes. J Chromatogr 219:379–384

    CAS  Article  Google Scholar 

  • Geiselhardt S, Otte T, Hilker M (2009) The role of cuticular hydrocarbons in male mating behavior of the mustard leaf beetle, Phaedon cochleariae (F.). J Chem Ecol 35:1162–1171

    CAS  PubMed  Article  Google Scholar 

  • Geiselhardt S, Otte T, Hilker M (2012) Looking for a similar partner: host plants shape mating preferences of herbivorous insects by altering their contact pheromones. Ecol Lett 15:971–977

    PubMed  Article  Google Scholar 

  • Grau PA, Terriere LC (1971) Fatty acid profile of the cabbage looper, Trichoplusia ni, and the effect of diet and rearing conditions. J Insect Physiol 17:1637–1649

    CAS  Article  Google Scholar 

  • Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393

    CAS  PubMed  Article  Google Scholar 

  • Kühbandner S, Hacker K, Niedermayer S, Steidle JLM, Ruther J (2012) Composition of cuticular lipids in the pteromalid wasp Lariophagus distinguendus is host dependent. Bull Entomol Res 102:610–617

    PubMed  Article  Google Scholar 

  • Maan ME, Seehausen O (2011) Ecology, sexual selection and speciation. Ecol Lett 14:591–602

    PubMed  Article  Google Scholar 

  • Makki R, Cinnamon E, Gould AP (2014) The development and functions of oenocytes. Annu Rev Entomol 59:405–425

    CAS  PubMed  Article  Google Scholar 

  • Mateo JM (2004) Recognition systems and biological organization: the perception component of social recognition. Ann Zool Fenn 41:729–745

    Google Scholar 

  • Matsubayashi KW, Ohshima I, Nosil P (2010) Ecological speciation in phytophagous insects. Entomol Exp Appl 134:1–27

    Article  Google Scholar 

  • Millar JG (2000) Polyene hydrocarbons and epoxides: a second major class of lepidopteran sex attractant pheromones. Annu Rev Entomol 45:575–604

    CAS  PubMed  Article  Google Scholar 

  • Millar JG (2010) Chemical synthesis of insect cuticular hydrocarbons. In: Blomquist GJ, Bagnères AG (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 163–186

    Chapter  Google Scholar 

  • Nosil P (2012) Ecological speciation. Oxford University Press, Oxford

    Google Scholar 

  • Nosil P, Vines TH, Funk DJ (2005) Perspective: reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution 59:705–719

    PubMed  Google Scholar 

  • Pennanec’h M, Bricard L, Kunesch G, Jallon JM (1997) Incorporation of fatty acids into cuticular hydrocarbons of male and female Drosophila melanogaster. J Insect Physiol 43:1111–1116

    PubMed  Article  Google Scholar 

  • Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336–352

    Article  Google Scholar 

  • Safran RJ, Scordato ES, Symes LB, Rodríguez RL, Mendelson TC (2013) Contributions of natural and sexual selection to the evolution of premating reproductive isolation: a research agenda. Trends Ecol Evol 28:643–650

    PubMed  Article  Google Scholar 

  • Schluter D (2001) Ecology and the origin of species. Trends Ecol Evol 16:372–380

    PubMed  Article  Google Scholar 

  • Schluter D (2009) Evidence for ecological speciation and its alternative. Science 323:737–741

    CAS  PubMed  Article  Google Scholar 

  • Scribe P, Guezennec J, Dagaut J, Pepe C, Saliot A (1988) Identification of the position and the stereochemistry of the double bond in monounsaturated fatty acid methyl esters by gas chromatography/mass spectrometry of dimethyl disulfide derivatives. Anal Chem 60:928–931

    CAS  Article  Google Scholar 

  • Sharon G, Segal D, Ringo JM, Hefez A, Zilber-Rosenberg I, Rosenberg E (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci U S A 107:20051–20056

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Singer T (1998) Roles of hydrocarbons in the recognition systems of insects. Am Zool 38:394–405

    CAS  Google Scholar 

  • Smadja C, Butlin RK (2009) On the scent of speciation: the chemosensory system and its role in premating isolation. Heredity 102:77–97

    CAS  PubMed  Article  Google Scholar 

  • Stanley-Samuelson DW, Jurenka RA, Cripps C, Blomquist GJ, de Renobales M (1988) Fatty acids in insects: composition, metabolism and biological significance. Arch Insect Biochem Physiol 9:1–33

    CAS  Article  Google Scholar 

  • The Marie Curie SPECIATION Network (2012) What do we need to know about speciation? Trends Ecol Evol 27:27–39

    Article  Google Scholar 

  • Turunen S (1973) Utilization of fatty acids by Pieris brassicae reared on artificial and natural diets. J Insect Physiol 19:1999–2009

    CAS  Article  Google Scholar 

  • Via S (2009) Natural selection in action during speciation. Proc Natl Acad Sci U S A 106:9939–9946

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Wilkins MR, Seddon N, Saffran RJ (2013) Evolutionary divergence in acoustic signals: causes and consequences. Trends Ecol Evol 28:156–166

    PubMed  Article  Google Scholar 

  • Yeoh H-H, Wee Y-C, Watson L (1992) Leaf protein contents and amino acid patterns of dicotyledonous plants. Biochem Syst Ecol 20:657–663

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Dahlem Centre of Plant Sciences by a grant to Tobias Otte. The authors thank the editor and three anonymous reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Geiselhardt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1

(DOCX 13 kb)

Supplementary Table S2

(DOCX 17 kb)

Supplementary Table S3

(DOCX 18 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Otte, T., Hilker, M. & Geiselhardt, S. The Effect of Dietary Fatty Acids on the Cuticular Hydrocarbon Phenotype of an Herbivorous Insect and Consequences for Mate Recognition. J Chem Ecol 41, 32–43 (2015). https://doi.org/10.1007/s10886-014-0535-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-014-0535-9

Keywords

  • Cuticular hydrocarbons
  • Assortative mating
  • Dietary fatty acids
  • Chrysomelidae