Skip to main content
Log in

Variation in Cyanogenic Glycosides Across Populations of Wild Lima Beans (Phaseolus lunatus) Has No Apparent Effect on Bruchid Beetle Performance

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Cyanogenic glycosides (CNGs) act as feeding or oviposition deterrents and are toxic after enzymatic hydrolysis, thus negatively affecting herbivore performance. While most studies on CNGs focus on leaf herbivores, here we examined seeds from natural populations of Phaseolus lunatus in Mexico. The predominant CNGs, linamarin and lotaustralin, were quantified for each population by using ultra-high pressure liquid chromatography-mass spectrometry. We also examined whether there was a correlation between the concentration of CNGs and the performance of the Mexican bean beetle, Zabrotes subfasciatus, on seeds from each population. The concentrations of CNGs in the seeds were relatively high compared to the leaves and were significantly variable among populations. Surprisingly, this had little effect on the performance of the bruchid beetles. Zabrotes subfasciatus can tolerate high concentrations of CNGs, most likely because of the limited β-glucosidase activity in the seeds. Seed herbivory does not appear to liberate hydrogen cyanide due to the low water content in the seed. This study illustrates the importance of quantifying the natural variation and activity of toxic compounds in order to make relevant biological inferences about their role in defense against herbivores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aikman K, Bergman D, Ebinger J, Seigler D (1996) Variation of cyanogenesis in some plant species of the Midwestern United States. Biochem Syst Ecol 24:637–645

    Article  CAS  Google Scholar 

  • Ballhorn DJ, Lieberei R (2006) Oviposition choice of Mexican bean beetle (Epilachna varivestis) depends on host plants cyanogenic capacity. J Chem Ecol 32:1861–1865

    Article  CAS  PubMed  Google Scholar 

  • Ballhorn DJ, Lieberei R, Ganzhorn JU (2005) Plant cyanogenesis of Phaseolus lunatus and its relevance for herbivore-plant interaction: the importance of quantitative data. J Chem Ecol 31:1445–1473

    Article  CAS  PubMed  Google Scholar 

  • Ballhorn DJ, Heil M, Pietrowski A, Lieberei R (2007) Quantitative effects of cyanogenesis on an adapted herbivore. J Chem Ecol 33:2195–2208

    Article  CAS  PubMed  Google Scholar 

  • Ballhorn DJ, Kautz S, Lion U, Heil M (2008) Trade-offs between direct and indirect defences of lima bean (Phaseolus lunatus). J Ecol 96:971–980

    Article  CAS  Google Scholar 

  • Ballhorn DJ, Kautz S, Lieberei R (2010) Comparing responses of generalist and specialist herbivores to various cyanogenic plant features. Entomol Exp Appl 134:245–259

    Article  CAS  Google Scholar 

  • Benrey B, Denno RF (1997) The slow-growth-high-mortality hypothesis: a test using the cabbage butterfly. Ecology 78:987–999

    Google Scholar 

  • Benrey B, Callejas A, Rios L, Oyama K, Denno RF (1998) The effects of domestication of Brassica and Phaseolus on the interaction between phytophagous insects and parasitoids. Biol Control 11:130–140

    Article  Google Scholar 

  • Brattsten LB, Samuelian JH, Long KY, Kincaid SA, Evans CK (1983) Cyanide as a feeding stimulant for the southern army worm, Spodoptera eridania. Ecol Entomol 8:125–132

    Article  Google Scholar 

  • Buhrmester RA, Ebinger JE, Seigler DS (2000) Sambunigrin and cyanogenic variability in populations of Sambucus canadensis L. (Caprifoliaceae). Biochem Syst Ecol 28:689–695

    Article  CAS  PubMed  Google Scholar 

  • Calatayud PA, Le Ru B (1996) Study of the nutritional relationships between the cassava mealybug ant its host plant. Bull Soc Zool Fr 121:391–398

    Google Scholar 

  • Campan EDM, Benrey B (2006) Effects of seed type and bruchid genotype on the performance and oviposition behavior of Zabrotes subfasciatus (Coleoptera: Bruchidae). Insect Sci 13:309–318

    Article  Google Scholar 

  • Engler HS, Spencer KC, Gilbert LE (2000) Preventing cyanide release from leaves. Nature 406:144–145

    Article  CAS  PubMed  Google Scholar 

  • Ferreira C, Parra RP, Terra WR (1997) The effect of dietary plant glycosides on larval midgut β-glucosidases from Spodoptera frugiperda and Diatraea saccharalis. Insect Biochem Molec 27:55–59

    Article  CAS  Google Scholar 

  • Franks TK, Hayasaka Y, Choimes S, van Heeswijck R (2005) Cyanogenic glucosides in grapevine: polymorphism, identification and developmental patterns. Phytochemistry 66:165–173

    Article  CAS  PubMed  Google Scholar 

  • Frehner M, Scalet M, Conn EE (1990) Pattern of the cyanide-potential in developing fruits - implications for plants accumulating cyanogenic monoglucosides (Phaseolus-lunatus) or cyanogenic diglucosides in their seeds (Linum usitatissimum, Prunus amygdalus). Plant Physiol 94:28–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gleadow RM, Woodrow IE (2000a) Temporal and spatial variation in cyanogenic glycosides in Eucalyptus cladocalyx. Tree Physiol 20:591–598

    Article  CAS  PubMed  Google Scholar 

  • Gleadow RM, Woodrow IE (2000b) Polymorphism in cyanogenic glycoside content and cyanogenic beta-glucosidase activity in natural populations of Eucalyptus cladocalyx. Aust J Plant Physiol 27:693–699

    CAS  Google Scholar 

  • Gleadow RM, Woodrow IE (2002) Constraints on effectiveness of cyanogenic glycosides in herbivore defense. J Chem Ecol 28:1301–1313

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Rodriguez A, Benrey B, Callejas A, Oyama K (2002) Inter- and intraspecific genetic variation and differentiation in the sibling bean weevils Zabrotes subfasciatus and Z. sylvestris (Coleoptera : Bruchidae) from Mexico. Bull Entomol Res 92:185–189

    Article  PubMed  Google Scholar 

  • Goodger JQD, Capon RJ, Woodrow IE (2002) Cyanogenic polymorphism in Eucalyptus polyanthemos Schauer subsp vestita L. Johnson and K. Hill (Myrtaceae). Biochem Syst Ecol 30:617–630

    Article  CAS  Google Scholar 

  • Goodger JQD, Ades PK, Woodrow IE (2004) Cyanogenesis in Eucalyptus polyanthemos seedlings: heritability, ontogeny and effect of soil nitrogen. Tree Physiol 24(6):681–688

    Article  PubMed  Google Scholar 

  • Honda K, Nishii W, Hayashi N (1997) Oviposition stimulants for sulfur butterfly, Colias erate poliographys: cyanoglucosides as synergists involved in host preference. J Chem Ecol 23:323–331

    Article  CAS  Google Scholar 

  • Hughes MA (1991) The cyanogenic polymorphism in Trifolium repens L. (white clover). Heredity 66:105–115

    Article  CAS  Google Scholar 

  • Jones DA (1988) Cyanogenesis in animal-plant interactions. In: Harnett DES (ed) Cyanide compounds in biology. Wiley, Chichester, pp 151–165

    Google Scholar 

  • Lieberei R (1988) Relationship of cyanogenic capacity (HCN-C) of the rubber tree Hevea-Brasiliensis to susceptibility to Microcyclus ulei, the agent causing South American leaf blight. J Phytopathol 122:54–67

    Article  CAS  Google Scholar 

  • Lieberei R, Fock HP, Biehl B (1996) Cyanogenesis inhibits active pathogen defence in plants: inhibition by gaseous HCN of photosynthetic CO2 fixation and respiration in intact leaves. Angew Bot 70:230–238

    CAS  Google Scholar 

  • Miller RE, Simon J, Woodrow IE (2006) Cyanogenesis in the Australian tropical rainforest endemic Brombya platynema (Rutaceae): chemical characterisation and polymorphism. Funct Plant Biol 33:477–486

    Article  CAS  Google Scholar 

  • Moraes RA, Sales MP, Pinto MSP, Silva LB, Oliveira AEA, Machado OLT, Fernandes KVS, Xavier-Filho J (2000) Lima bean (Phaseolus lunatus) seed coat phaseolin is detrimental to the cowpea weevil (Callosobruchus maculatus). Braz J Med Biol Res 33:191–198

    Article  CAS  PubMed  Google Scholar 

  • Nahrstedt A (1988) Cyanogenesis and the role of cyanogenic compounds in insects. Ciba Found Symp 140:131–150

    CAS  PubMed  Google Scholar 

  • Pentzold S, Zagrobelny M, Rook F, Bak S (2013) How insects overcome two-component plant chemical defence: plant β-glucosidases as the main target for herbivore adaptation. Biol Rev. doi:10.1111/brv.12066

    Google Scholar 

  • Poulton JE (1990) Cyanogenesis in plants. Plant Physiol 94:401–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Puustinen S, Mutikainen P (2001) Host-parasite-herbivore interactions: implications of host cyanogenesis. Ecology 82:2059–2071

    Google Scholar 

  • Rojas MG, Morales-Ramos JA (2010) Tri-trophic level impact of host plant linamarin and lotaustralin on Tetranychus urticae and its predator Phytoseiulus persimilis. J Chem Ecol 36:1354–1362

    Article  CAS  PubMed  Google Scholar 

  • Schappert PJ, Shore JS (1999) Effects of cyanogenesis polymorphism in Turnera ulmifolia on Euptoieta hegesia and potential Anolis predators. J Chem Ecol 25:1455–1479

    Article  CAS  Google Scholar 

  • Seigler DS (1998) Cyanogenic glycosides and cyanolipids. In: Seigler DS (ed) Plant secondary metabolism. Kluwer Academic Press, Boston, pp 273–296

    Chapter  Google Scholar 

  • Selmar D, Lieberei R, Biehl B, Conn EE (1989) α-Hydroxynitrile lyase in Hevea brasiliensis and its significance for rapid cyanogenesis. Physiol Plant 75:97–101

    Article  CAS  Google Scholar 

  • Vetter J (2000) Plant cyanogenic glycosides. Toxicon 38:11–36

    Article  CAS  PubMed  Google Scholar 

  • Woodrow IE, Slocum DJ, Gleadow RM (2002) Influence of water stress on cyanogenic capacity in Eucalyptus cladocalyx. Funct Plant Biol 29:103–110

    Article  CAS  Google Scholar 

  • Zagrobelny M, Bak S, Rasmussen AV, Jorgensen B, Naumann CM, Moller BL (2004) Cyanogenic glucosides and plant-insect interactions. Phytochemistry 65:293–306

    Article  CAS  PubMed  Google Scholar 

  • Zaugg I, Benrey B, Bacher S (2013) Bottom-up and top-down effects influence bruchid beetle individual performance but not population densities in the field. PLoS ONE 8:e55317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Johnattan Hernández Cumplido, Geraldine Mudavadi, and John Riordan for their assistance with collections, experiments, chemical analysis, and general support throughout this study. We also thank Stefan Pentzold for advice and guidance on β-glucosidase activity and Ted Turlings and two anonymous reviewers for feedback on the manuscript. We express our gratitude to the Universidad del Mar Campus in Puerto Escondido for providing logistic support and infrastructure during the field work in Mexico. This research was financially supported by the Swiss National Science Foundation (Project No. 31003A_127364) awarded to BB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betty Benrey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(DOCX 8336 kb)

Online Resource 2

(DOCX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlichta, J.G., Glauser, G. & Benrey, B. Variation in Cyanogenic Glycosides Across Populations of Wild Lima Beans (Phaseolus lunatus) Has No Apparent Effect on Bruchid Beetle Performance. J Chem Ecol 40, 468–475 (2014). https://doi.org/10.1007/s10886-014-0434-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-014-0434-0

Keywords

Navigation