Skip to main content
Log in

Separation of Scaptotrigona postica Workers into Defined Task Groups by the Chemical Profile on Their Epicuticle Wax Layer

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

During evolution, the cuticle surface of insects acquired functions in communication, such as inter- and intra-specific recognition, identification of gender, physiological state, and fertility. In eusocial bees, the information in the cuticular surface is important not only to discriminate nestmates from non-nestmates but also to identify an individual’s class, life phase or task. A comparative study of the cuticular surface chemical profile of workers of Scaptotrigona postica in different phases of life, i.e., newly emerged workers (NE), brood comb area workers (CA), and forager workers (FO) was undertaken by gas chromatography linked to mass spectrometry. Multivariate statistical analysis was performed to verify how workers are grouped according to their chemical profile and to determine which compounds are responsible for separating them into groups. The cuticle surface of workers contains mainly hydrocarbons and a small amount of oxygenated compounds. Multivariate statistical analysis showed qualitative and quantitative variation in relation to the life phases/tasks performed, and all groups were distinct. The most abundant compound found in NE and CA was n-heptacosane, while in FO, it was (Z)-9-heptacosene. The compounds that differentiate NE from other groups are n-tricosane and n-hexacosane. A (Z)-X-octacosene and n-nonacosane are the chemicals that distinguish CA from NE and FO, while 11- and 13-methylpentacosane, (Z)-X-hexacosene, and (Z)-9-heptacosene characterize FO as distinct from NE and CA. The probable function of alkenes is nestmate recognition, mainly in FO. The results show that the cuticle surfaces of workers are characteristic of the phase of life/task performed by workers, allowing intra-colonial recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdalla FC, Jones GR, Morgan ED, Cruz-Landim C (2003) Ccomparative study of the cuticular hydrocarbons composition of Melipona bicolor Lepeletier, 1836 (Hymenoptera, Meliponini) workers and queens. Genet Mol Res 2:191–199

    CAS  PubMed  Google Scholar 

  • Baracchi D, Turillazzi S (2010) Differences in venom and cuticular peptides in individuals of Apis mellifera (Hymenoptera: Apidae) determined by MALDI-TOF MS. J Insect Physiol 56:366–375

    Article  CAS  PubMed  Google Scholar 

  • Baracchi D, Dapporto L, Teseo S, Hashim R, Turillazzi S (2010) Medium molecular weight polar substances of the cuticle as tools in the study of the taxonomy, systematics and chemical ecology of tropical hover wasps (Hymenoptera: Stenogastrinae). J ZoolSyst Evol Res 48:109–114

    Article  Google Scholar 

  • Baracchi D, Fadda A, Turillazzi S (2012) Evidence for antiseptic behaviour towards sick adult bees in honey bee colonies. J Insect Physiol 58:1589–1596

    Article  CAS  PubMed  Google Scholar 

  • Blomquist GJ, Dillwith JW (1985) Cuticular lipids. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology. Pergamon Press, Oxford, pp 117–154

    Google Scholar 

  • Blomquist GJ, Jackson LL (1979) Chemistry and biochemistry of insect waxes. Prog Lipid Res 17:319–345

    Article  CAS  PubMed  Google Scholar 

  • Blomquist GJ, Roubick DW, Buchmann SL (1985) Wax chemisty of two stingless bees of the Trigonisca group (Apidae, Meliponinae). Comp Biochem Physiol 82B:137–142

    CAS  Google Scholar 

  • Blomquist GJ, Nelson DR, De Renobales M (1987) Chemistry, biochemistry and physiology of insect cuticular lipids. Arch Insect Biochem Physiol 6:227–265

    Article  CAS  Google Scholar 

  • Blomquist GJ, Tillman JA, Mpuru S, Seybold SJ (1998) The cuticle and cuticular hydrocarbons of insects: structure, function and biochemistry. In: Van der Meer RK, Breed MD, Winston ML, Espelie EK (eds) Pheromone communication in social insects. Westview, Boulder, pp 35–54

    Google Scholar 

  • Breed MD, Williams KR, Fewell JH (1988) Comb wax mediates the acquisition of nest-mate recognition cues in honeybees. Proc Natl Acad Sci U S A 85:8766–8769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Breed MD, GarryMF PAN, Hibbard BE, Bjostad LB, Page RE (1995) The role of wax comb in honey bee nestmate recognition. Anim Behav 50:489–496

    Article  Google Scholar 

  • Breed MD, Peery S, Bjostad LB (2004) Testing the blank slate hypothesis; why honey bee colonies accept young bees? Insect Soc 51:12–16

    Article  Google Scholar 

  • Buchwald R, Breed MD (2005) Nestmate recognition cues in a stingless bee, Trigona fulviventris. Anim Behav 70:1331–1337

    Article  Google Scholar 

  • Buckner JL (1993) Cuticular polar lipids in insects. In: Stanley-Samuelson DW, Nelson DR (eds) Insect lipids: chemistry, biochemistry and biology. University of Nebraska Press, Nebraska, pp 227–270

    Google Scholar 

  • Carlin NF (1989) Discrimination between and within colonies of social insects: two null hypotheses. Neth J Zool 39:86–100

    Article  Google Scholar 

  • Carlson DA, Roan CS, Yost RA, Hector J (1989) Dimethyl disulfide derivatives of long-chain alkenes, alkadienes, and alkatrienes for gas-chromatography mass-spectrometry. Anal Chem 61:1564–1571

    Article  CAS  Google Scholar 

  • Chapman RF (1998) The insects: structure and function. Cambridge University Press, Cambridge, UK

  • Clément J-L, Bagnères AG (1998) Nestmate recognition in termites. In: Vander Meer RK, Breed MD, Winston ML, Espelie EK (eds) Pheromone communication in social insects. Westview, Boulder, pp 57–58

    Google Scholar 

  • Cornette R, Farine JP, Quennedey B, Riviere S, Brossut R (2002) Molecular characterization of Lmap54, a new epicuticular surface protein in the cockroach Leucophaea maderae (Dictyoptera, Oxyhaloinae). Insect Biochem Mol Biol 32:1635–1642

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Landim C, Stort AC, Cruz MAC, Kitajima EW (1965) Órgão tibial dos machos de Euglossini. Estudo ao microscópio óptico e eletrônico. Rev Bras Biol 25:323–342

    Google Scholar 

  • Cruz-Landim C, Ferreira-Caliman MJ, Gracioli-Vitti LF, Zucchi R (2012) Correlation between mandibular gland secretion and cuticular hydrocarbons in the stingless bee Melipona quadrifasciata. Gen Mol Res 11:966–977

    Article  CAS  Google Scholar 

  • Dani FR, Jones GR, Destri S, Spencer SH, Turillazi S (2001) Deciphering the recognition signature within the cuticular chemical profile of paper wasps. Anim Behav 62:165–171

    Article  Google Scholar 

  • Dani FR, Jones GR, Corsi S, Beard R, Pradella D, Turillazzi S (2005) Nestmate recognition cues in the honey bee: differential importance of cuticular alkanes and alkenes. Chem Senses 30:477–489

    Article  CAS  PubMed  Google Scholar 

  • Ferreira-Caliman JM, Nascimento FS, Turatti IC, Mateus S, Lopes NP, Zucchi R (2010) The cuticular hydrocarbons profiles in the stingless bee Melipona marginata reflect task-related differences. J Insect Physiol 56:800–804

    Article  CAS  PubMed  Google Scholar 

  • Free JB (1961) The social organization of the bumblebee colony. The Central Association of Bee-Keepers, Fleet

    Google Scholar 

  • Gamboa JG, Grudzien TA, Espelie KE, Bura EA (1996) Kin recognition in social wasps: combining chemical and behavioural evidence. Anim Behav 51:625–629

    Article  Google Scholar 

  • Gibbs A (2002) Lipid melting and cuticular permeability: new insights into an old problem. J Insect Physiol 48:391–400

    Article  CAS  PubMed  Google Scholar 

  • Hangartner W, Reichson JM, Wilson EO (1970) Orientation to nest material by the ant, Pogonoimyrmex badius (Latreille). Anim Behav 18:331–334

    Article  Google Scholar 

  • Howard RW (1993) Cuticular hydrocarbons and chemical communication. In: Stanley-Samuelson DW, Nelson DR (eds) Insect lipids: chemistry, biochemistry and biology. University of Nebraska Press, Lincoln, pp 179–226

    Google Scholar 

  • Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393

    Article  CAS  PubMed  Google Scholar 

  • Hubbard MD (1974) Influence of the nest material and colony odour on digging in the ant Solenopsis invicta (Hymenoptera: Formicidae). J Georgia Entomol Soc 9:127–132

    Google Scholar 

  • Kather R, Drijfhout FP, Martin SJ (2011) Task group differences in cuticular lipids in the honey bee Apis mellifera. J Chem Ecol 37:205–212

    Article  CAS  PubMed  Google Scholar 

  • Lange R (1960) Über die futterweitergabe zwischen angehörigen verschiedener Waldameisenstaaten. Z Tierpsychol 17:389–401

    Google Scholar 

  • Liang D, Silverman J (2000) “You are what you eat”: diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant Linepithema humile. Naturwissenschaften 87:412–416

    Article  CAS  PubMed  Google Scholar 

  • Lockey KH (1980) Insect cuticular hydrocarbons. Comp Biochem Physiol 65B:457–462

    CAS  Google Scholar 

  • Lockey KH (1985) Insect cuticular lipids. Comp Biochem Physiol 81B:263–273

    CAS  Google Scholar 

  • Lockey KH (1988) Lipids of the insect cuticle: origin, composition and function. Comp Biochem Physiol 89B:595–645

    CAS  Google Scholar 

  • Lorenzi MC, Bagnères AG, Clément J-L (1996) The role of cuticular hydrocarbons in social insects: is it the same in paper wasps? In: Turillazzi S, West-Eberhard MJ (eds) Natural history and evolution of paper wasps. Oxford University Press, UK, pp 178–189

    Google Scholar 

  • Monnin T, Peters C (1999) Dominance hierarchy and reproductive conflits among subordinates in a monogynous queenless ant. Behav Ecol 10:23–32

    Article  Google Scholar 

  • Morgan ED (1990) Preparation of small scale samples from insects for chromatography. Anal Chim Acta 236:227–235

    Article  CAS  Google Scholar 

  • Morgan ED (2004) Biosymthesis in insects. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Nelson DR (1993) Methyl-branched lipids in insects. In: Stanley-Samuelson DW, Nelson DR (eds) Insect lipids: chemistry, biochemistry and biology. University of Nebraska Press, Nebraska, pp 271–315

    Google Scholar 

  • Nunes TM, Nascimento FS, Turatti ICC, Lopes NP, Zucchi R (2008) Nestmate recognition in a stingless bee: does the similarity of chemical cues determine guard acceptance? Anim Behav 75:1165–1171

    Article  Google Scholar 

  • Nunes TM, Morgan ED, Drijfhout FP, Zucchi R (2010) Caste-specific cuticular lipids in the stingless bee. Apidologie 41:579–588

    Article  CAS  Google Scholar 

  • Obin MS, Vander Meer MK (1988) Sources of nestmate recognition cues in the imported fire ant Solenopsis invicta Buren (Hymenoptera: Formicidae). Anim Behav 36:1361–1370

    Article  Google Scholar 

  • Oldham NJ, Billen J, Morgan ED (1994) On the similarity of the Dufour gland secretion and the cuticular hydrocarbons of some bumblebees. Physiol Entomol 19:115–123

    Article  CAS  Google Scholar 

  • Richard F-J, Aubert A, Grozinger CM (2008) Modulation of social interactions by immune stimulation in honey bee, Apis mellifera, workers. BMC Biol 60:50

    Article  Google Scholar 

  • Singer TL, Espelie KE (1992) Social wasps use nest paper hydrocarbons for nestmate recognition. Anim Behav 44:63–68

    Article  Google Scholar 

  • Sledge MF, Dani FR, Cervo R, Dapporto L, Turillazzi S (2001) Recognition of social parasites as nestmates: adoption of colony-specific host cuticular odours by the paper wasp parasite Polistes sulficer. Proc Roy Soc London 268:2253–2260

    Article  CAS  Google Scholar 

  • Steinmetz I, Schmolz E, Ruther J (2003) Cuticular lipids as trail pheromone in a social wasp. Proc Roy Soc London 270:385–391

    Article  CAS  Google Scholar 

  • Turillazzi S, Mastrobuoni G, Dani FR, Moneti G, Pieraccini G, La Marca G, Bartolucci G, Perito B, Lambardi D, Cavallini V (2006) Dominulin A and B: two new antibacterial peptides identified on the cuticle and in the venom of the social paper wasp Polistes dominulus using MALDI-TOF, MALDITOF/TOF, and ESI-Ion Trap. J Am Soc Mass Spectrom 17:376–383

    Article  CAS  PubMed  Google Scholar 

  • van Wilgenburg E, Felden A, Choe D-H, Sulc R, Luo J, Shea KJ, Elgar MA, Tsutsui ND (2012) Learning and discrimination of cuticular hydrocarbonsin a social insect. Biol Lett 8:17–20

    Article  PubMed Central  PubMed  Google Scholar 

  • Vander Meer RK, Morel L (1998) Nestmate recognition in ants. In: Vander Meer RK, Breed MD, Winston ML, Espelie EK (eds) Pheromone communication in social insects. Westview, Boulder, pp 79–103

    Google Scholar 

  • Vogel S (1963) Duftdrüsen im Dienste der Bestaubung: Über Bau und Funktion der Osmophor en. Akad Wiss Lit Abh Math Naturwiss KI 1962:599–763

    Google Scholar 

  • Vogel S (1974) Ólblumen and olsammelnde Bienen. Akad Wiss Lit Abh Math Naturwiss KI Trop Subtrop Pflanz 7:1–267

    Google Scholar 

  • Zupko K, Sklan D, Lensky Y (1993) Proteins of the honeybee (Apis mellifera L.). Body surface and exocrine gland secretions. J Insect Physiol 39:41–46

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for the fellowship (Proc. 07/56682-1) and the reviewers for their valuable suggestions which helped to improve the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana B. Poiani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poiani, S.B., Morgan, E.D., Drijfhout, F.P. et al. Separation of Scaptotrigona postica Workers into Defined Task Groups by the Chemical Profile on Their Epicuticle Wax Layer. J Chem Ecol 40, 331–340 (2014). https://doi.org/10.1007/s10886-014-0423-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-014-0423-3

Keywords

Navigation