Skip to main content
Log in

Glycerophospholipid Analysis of Eastern Red Bat (Lasiurus Borealis) Hair by Electrospray Ionization Tandem Mass Spectrometry

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Pilosebaceous units found in the mammalian integument are composed of a hair follicle, the proximal portion of the hair shaft, a sebaceous gland, and the erector pili muscle. Pilosebaceous units release protective oils, or sebum, by holocrine secretion onto skin and hair through rupturing of sebocytes. Sebum is composed largely of polar and neutral lipids including glycerolipids, free fatty acids, sterols, wax esters, sterol esters, and squalene. In addition to these lipid classes, there is a small proportion of ionic/anionic glycerophospholipids (GPs). Composition of GPs on hair is rarely addressed despite their broad biological activities as signaling molecules and membrane stability. Furthermore, knowledge on GP composition in bats is lacking. Bat GP composition is important to document due to GP roles ranging from decreasing drag during migration to interaction with the integumentary microbiome. In this study, we analyzed GP molecular composition with liquid chromatography electrospray ionization tandem mass spectrometry and compared GP content to previous literature. A total of 152 GPs were detected. Broad GP classes identified include lysophosphatidylcholine, phosphatidylcholine (PC), lysophosphatidylethanolamine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidic acid, and phosphatidylglycerol, with PC being the most abundant class. The acyl components were consistent with fatty acid methyl esters and triacylglyceride moieties found in Eastern red bat sebum. Glycerophospholipid proportions of the hair surface were different from a previous study on bat lung surfactants. This study determined the broad class and molecular species of bat sebum GPs that may be used in future ecological studies in vespertilionid bats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Aktas M, Wessel M, Hacker S, Klüsener S, Gleichenhagen J, Narberhaus F (2010) Phosphatidylcholine biosynthesis and its significance in bacteria interacting with eukaryotic cells. Eur J Cell Biol 89:888–894

    Article  CAS  PubMed  Google Scholar 

  • Arouri A, Mouritsen OG (2013) Membrane-perturbing effect of fatty acids and lysolipids. Prog Lipid Res 52:130–140

    Article  CAS  PubMed  Google Scholar 

  • Barclay RMR (1989) The effect of reproductive condition on the foraging behavior of female hoary bats, Lasiurus cinereus. Behav Ecol Socio Biol 24:31–37

    Article  Google Scholar 

  • Blehert D, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM, Buckles EL, Coleman JTH, Darling SR, Gargas A, Niver R, Okoniewski JC, Rudd RJ, Stone WB (2009) Bat white-nose syndrome: an emerging fungal pathogen? Science 323:227

    Article  CAS  PubMed  Google Scholar 

  • Brooke AP, Decker DM (1996) Lipid compounds in secretions of fishing bat, Noctilio leporinus (Chiroptera: Noctilionidae). J Chem Ecol 22:1411–1428

    Article  CAS  PubMed  Google Scholar 

  • Camera E, Ludovici M, Galante M, Sinagra J, Picardo M (2010) Comprehensive analysis of the major lipid classes in sebum by rapid resolution high-performance liquid chromatography and electrospray mass spectrometry. J Lipid Res 51:3377–3388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colton SW, Downing DT (1985) The time-course of lipid biosynthesis in horse skin. Biochim Biophys Acta 836:306–311

    Article  CAS  PubMed  Google Scholar 

  • Comerci DJ, Altabe S, de Mendoza D, Ugalde RA (2006) Brucella abortus synthesizes phosphatidylcholine from choline provided by the host. J Bact 188:1929–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortese TA, Nicoll PA (1979) In vivo observations of skin appendages in the bat wing. J Invest Dermatol 54:1–11

    Article  Google Scholar 

  • Cryan PM (2003) Seasonal distribution of migratory tree bats (Lasiurus and Lasionycteris) in North America. J Mammal 84:579–593

    Article  Google Scholar 

  • Czirjak GA, Pap PL, Vagasi CI, Giraudeau M, Muresan C, Mirleau P, Heeb P (2013) Preen gland removal increases plumage bacterial load but not that of feather-degrading bacteria. Naturwissenschaften 100:145–151

    Article  CAS  PubMed  Google Scholar 

  • de Kroon AIPM (2007) Metabolism of phosphatidylcholine and its implications for lipid acyl chain composition in Saccharomyces cerevisiae. Biochim Biophys Acta 1771:343–352

    Article  PubMed  Google Scholar 

  • Downie MT, Kealey T (1998) Lipogenesis in the human sebaceous gland: glycogen and glycerophosphate are substrates for the synthesis of sebum lipids. J Invest Dermatol 111:198–205

    Article  Google Scholar 

  • Downing DT, Strauss JS (1974) Synthesis and composition of surface lipids of human skin. J Invest Dermatol 62:228–244

    Article  CAS  Google Scholar 

  • Drake DR, Brogden KA, Dawson DV, Wertz PW (2008) Antimicrobial lipids at the skin surface. J Lipid Res 49:4–12

    Article  CAS  PubMed  Google Scholar 

  • Eckstein HC (1927) The cholesterol content of hair, wool, and feathers. J Biol Chem 73:363–369

    CAS  Google Scholar 

  • Eiseinger M, Li WH, Anthoavage M, Pappas A, Zhang L, Rossetti D, Huang Q, Seiberg M (2011) A melanocortin receptor 1 and 5 antagonist inhibits sebaceous gland differentiation and the production of sebum-specific lipids. J Dermatol Sci 63:23–32

    Article  Google Scholar 

  • Emara SH, El-Mokaddem HS (1979) Gesamtlipide, cholesterin und phospholipide im talg und serum bei verschiedenen seborrhoischen erkrankungen. Z Hautkrankheiten 14:641–645

    Google Scholar 

  • Fahy E, Subramaniam S, Brown HA, Glass CD, Merrill AH Jr, Murphy TC, Raetz CRH, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze MS, White SH, Witztum JL, Dennis EA (2005) A comprehensive classification system for lipids. Eur J Lipid Sci Technol 107:337–364

    Article  CAS  Google Scholar 

  • Fahy E, Subramaniam S, Murphy R, Nishijima M, Raetz C, Shimizu T, Spener F, van Meer G, Wakelam M, Dennis E (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50:S9–S14

    Article  PubMed  PubMed Central  Google Scholar 

  • Gargas A, Trest MT, Christensen M, Volk TJ, Blehert DS (2009) Geomyces destructans sp. nov. associated with bat white-nose syndrome. Mycotaxon 108:147–154

    Article  Google Scholar 

  • Georgel P, Crozat K, Lauth X, Makrantonaki E, Seltmann H, Sovath S, Hoebe K, Du X, Rutschmann S, Jiang Z, Bigby T, Nizet V, Zouboulis CC, Beutler B (2005) A toll-like receptor 2-responsive lipid effector pathway protects mammals against skin infections with gram-positive bacteria. Infect Immun 73:4512–4521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haffner M (2000) Structure and function of pilosebaceous units on the heads of small mammals (Insectivora, Chiroptera, Rodentia). Acta Zool 81:195–203

    Article  Google Scholar 

  • Hanahan DJ (1997) A guide to phospholipid chemistry. Oxford University Press, New York

    Google Scholar 

  • Hassanloo Z, Fenton MB, DeLaurier JD, Eger JL (1995) Fur increases the parasite drag for flying bats. Can J Zool 73:837–842

    Article  Google Scholar 

  • Hastings C, Rand T, Bergen HT, Thliveris JA, Shaw AR, Lombaert GA, Mantsch HH, Giles BL, Dakshinamurti S, Scott JE (2005) Stachybotrys chartarum alters surfactant-related phospholipid synthesis and CTP:cholinephosphate cytidylyltransferase activity in isolated fetal rat type II cells. Toxicol Sci 84:186–194

    Article  CAS  PubMed  Google Scholar 

  • Hickey MBC, Fenton MB (1990) Foraging by red bats (Lasiurus borealis): do intraspecific chases mean territoriality? Can J Zool 68:2477–2482

    Google Scholar 

  • Kligman A (1963) The uses of sebum. In: Montagna RAW, Silver AF (eds) Advances in biology of skin. Pergamon Press, Oxford, pp 307–319

    Google Scholar 

  • Kunz TH, Lumsden LF (2003) Ecology of cavity and foliage roosting bats. In: Kunz TH, Fenton MB (eds) Bat ecology. University of Chicago Press, Chicago, pp 3–89

    Google Scholar 

  • Lang CJ, Postle AD, Orgeig S, Possmayer F, Bernhard W, Panda AK, Jürgens KD, Milsom WK, Nag K, Daniels CB (2005) Dipalmitoylphosphatidylcholine is not the major surfactant GPs species in all mammals. Am J Physiol-Reg I 289:R1426–R1439

    Article  CAS  Google Scholar 

  • Lattif AA, Mukherjee PK, Chandra J, Roth MR, Welti R, Rouabhia M, Ghannoum MA (2011) Lipidomics of Candida albicans biofilms reveals phase-dependent production of phospholipid molecular classes and role for lipid rafts in biofilm formation. Microbiology 157:3232–3242

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis RW (1970) Fish cutaneous mucus: a new source of skin surface lipid. Lipids 5:947–949

    Article  CAS  Google Scholar 

  • Lorch JM, Meteyer CU, Behr MJ, Boyles JG, Cryan PM, Hicks AC, Ballmann AE, Coleman JTH, Redell DN, Reeder DM, Blehert DS (2011) Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480:376–378

    Article  CAS  PubMed  Google Scholar 

  • Law S, Wertz PW, Swartzendruber DC, Squier CA (1995) Regional variation in content, composition, and organization of porcine epithelial barrier lipids revealed by thin layer chromatography and transmission electron microscopy. Arch Oral Biol 40:1085–1091

    Article  CAS  PubMed  Google Scholar 

  • Maier H, Meixner M, Hartmann D, Sandhoff R, Wang-Eckhardt L, Zöller I, Gieselmann V, Eckhardt M (2011) Normal fur development and sebum production depends on fatty acid 2-hydroxylase expression in sebaceous glands. J Biol Chem 286:25922–25934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGuire LP, Fenton MB, Guglielmo CG (2013) Phenotypic flexibility in migrating bats: seasonal variation in body composition, organ sizes and fatty acid profiles. J Exp Biol 216:800–808

    Article  CAS  PubMed  Google Scholar 

  • McMaster JD, Jenkinson M, Noble RC, Elder HY (1985) The lipid composition of bovine sebum and dermis. Brit Vet J 141:34–41

    Article  CAS  Google Scholar 

  • Melville DF, Johnston SD, Miller RR Jr (2012) Flying-fox (Pteropus spp.) sperm membrane fatty acid composition, its relationship to cold shock injury and implications for cryopreservation success. Cryobiology 65:224–229

    Article  CAS  PubMed  Google Scholar 

  • Minnis AM, Lindner DL (2013) Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., in bat hibernacula of eastern North America. Fungal Biol 117:638–649

    Article  PubMed  Google Scholar 

  • Mormann BM, Robbins LW (2010) Winter roosting ecology of eastern red bats in southwest Missouri. J Wildlife Manag 71:213–217

    Article  Google Scholar 

  • Muñoz-Garcia A, Ro J, Reichard JD, Kunz TH, Williams JB (2012) Cutaneous water loss and lipids of the stratum corneum in two syntopic species of bats. Comp Biochem Physiol Part A 161:208–215

    Article  Google Scholar 

  • Muñoz-Romo M, Nielson LT, Nassar JM, Kunz TH (2012) Chemical composition of the substances from dorsal patches of males of the Curacaoan long-nosed bat, Leptonycteris curasoae (Phyllostomidae: Glossophaginae). Acta Chiropterol 14:213–224

    Article  Google Scholar 

  • Nassar JM, Salazar MV, Quintero A, Stoner KE, Gómez M, Cabrera A, Jaffe K (2008) Seasonal sebaceous patch in the nectar-feeding bats Leptonycteris curasoae and L. yerbabuenae (Phyllostomidae: Glossophaginae): Phenological, histological, and preliminary chemical characterization. Zoology 111:363–376

    Article  PubMed  Google Scholar 

  • Napolitano R, Juarez MP (1997) Entomopathogenous fungi degrade epicuticular hydrocarbons of Triatoma infestans. Arch Biochem Biophys 344:208–214

    Article  CAS  PubMed  Google Scholar 

  • Nishizuka Y (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258:607–614

    Article  CAS  PubMed  Google Scholar 

  • Pannkuk EL, Gilmore DF, Savary BJ, Risch TS (2012) Triacylglyceride (TAG) profiles of integumentary lipids isolated from three bat species determined by matrix-assisted laser desorption–ionization time-of-flight mass spectrometry (MALDI–TOF MS). Can J Zool 90:1117–1127

    Article  CAS  Google Scholar 

  • Pannkuk EL, Gilmore DF, Fuller N, Savary BJ, Risch TS (2013a) Sebaceous lipid profiling of bat integumentary tissues: quantitative analysis of free fatty acids, monoacylglycerides, squalene, and sterols. Chem Biodivers 10:2122–2132

    Article  CAS  PubMed  Google Scholar 

  • Pannkuk EL, Risch TS, Savary BJ (2013b) Profiling the triacylglyceride contents in bat integumentary lipids by preparative thin layer chromatography and MALDI-TOF mass spectrometry. J Vis Exp 79:e50757

    Google Scholar 

  • Picardo M, Ottaviani M, Camera E, Mastrofrancesco A (2009) Sebaceous gland lipids. Dermatoendocrinology 1:68–71

    Article  CAS  Google Scholar 

  • Pilgram GSK, van der Meulen J, Gooris GS, Koerten HK, Bouwstra JA (2001) The influence of two azones and sebaceous lipids on the lateral organization of lipids isolated from human stratum corneum. Biochem Biophys Acta 1511:244–254

    Article  CAS  PubMed  Google Scholar 

  • Pison U, Max M, Neuendank A, Weidβach S, Pietschmann S (1994) Host defence capacities of pulmonary surfactant: evidence for ‘non-surfactant’ functions of the surfactant system. Eur J Clin Invest 24:586–599

    Article  CAS  PubMed  Google Scholar 

  • Porter A (2001) Why do we have apocrine and sebaceous glands? J R Soc Med 91:236–237

    Google Scholar 

  • Price ER, McGuire LP, Fenton MB, Guglielmo CG (2014) Flight muscle carnitine palmitoyl transferase activity varies with substrate chain length and unsaturation in the hoary bat (Lasiurus cinereus). Can J Zool 92:173–176. doi:10.1139/cjz-2013-0141

    Google Scholar 

  • Racey PA (1979) The prolonged storage and survival of spermatozoa in Chiroptera. J Reprod Fertil 56:391–402

    Article  CAS  PubMed  Google Scholar 

  • Reynolds TB (2009) Strategies for acquiring the phospholipid metabolite inositol in pathogenic bacteria, fungi and protozoa: making it and taking it. Microbiology 155:1386–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safi K, Kerth G (2003) Secretions of the interaural gland contain information about individuality and colony membership in the Bechstein’s bat. Anim Behav 65:363–369

    Article  Google Scholar 

  • Shawkey MD, Pillai SR, Hill GE (2003) Chemical warfare? Effects of uropygial oil on feather-degrading bacteria. J Avian Biol 34:345–349

    Article  Google Scholar 

  • Shawkey MD, Pillai SR, Hill GE (2009) Do feather-degrading bacteria affect sexually selected plumage color? Naturwissenschaften 96:123–128

    Article  CAS  PubMed  Google Scholar 

  • Shump KA Jr, Shump AU (1980) Comparative insulation in verspertilionid bats. Comp Biochem Physiol A 66:351–354

    Article  Google Scholar 

  • Shump KA Jr, Shump AU (1982) Lasiurus borealis. Mammal Species 183:1–6

    Google Scholar 

  • Singh EJ, Gershbein LL (1967) Phospholipids of human hair lipids. J Chromatogr 31:20–27

    Article  CAS  PubMed  Google Scholar 

  • Slocombe NC, Codd JR, Wood PG, Orgeig S, Daniels CB (2000) The effect of alterations in activity and body temperature on the pulmonary surfactant system in the lesser long-eared bat (Nyctophilus geoffroyi). J Exp Biol 203:2429–2435

    CAS  PubMed  Google Scholar 

  • Smith KR, Thiboutot DM (2008) Sebaceous gland lipids: friend or foe? J Lipid Res 49:271–281

    Article  CAS  PubMed  Google Scholar 

  • Spearman REC (1973) The integument: a textbook of skin biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Stewart ME, Downing DT, Pochi PE, Strauss JS (1978) The fatty acids of human sebaceous gland phosphatidylcholine. Biochim Biophys Acta 529:380–386

    Article  CAS  PubMed  Google Scholar 

  • Sugawara T, Nemoto K, Adachi Y, Yamano N, Tokuda N, Muto M, Okuyama R, Sakai S, Owada Y (2012) Reduced size of sebaceous gland and altered sebum lipid composition in mice lacking fatty acid binding protein 5 gene. Exp Dermatol 21:543–561

    Article  PubMed  Google Scholar 

  • Thomas RH, Price ER, Seewagen CL, Mackenzie SA, Bernards MA, Guglielmo CG (2010) Use of TLC-FID and GC-MS/FID to examine the effects of migratory state, diet and captivity on preen wax composition in White-throated Sparrows Zonotrichia albicollis. Ibis 152:782–792

    Article  Google Scholar 

  • Tsai JC, Lu CC, Lin MK, Guo JW, Sheu HM (2012) Effects of sebum on drug transport across the human stratum corneum in vivo. Skin Pharmacol Phys 25:124–132

    Article  CAS  Google Scholar 

  • Wanjie SW, Welti R, Moreau RA, Chapman KD (2005) Identification and quantification of glycerolipids in cotton fibers: reconciliation with metabolic pathway predictions from DNA databases. Lipids 40:773–785

    Article  CAS  PubMed  Google Scholar 

  • Yamamura S, Morita Y, Hasan Q, Rao SR, Murakami Y, Yokoyama K, Tamiya E (2002) Characterization of a new keratin-degrading bacterium isolated from deer fur. J Bioscience Bioeng 93:595–600

    Article  CAS  Google Scholar 

  • Yamashita A, Hayashi Y, Nemoto-Sasaki Y, Ito M, Oka S, Tanikawa T, Waku K, Sugiura T (2014) Acyltransferases and transacylases that determine the fatty acid composition of glycerolipds and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Prog Lipid Res 53:18–81

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was funded by an Arkansas State Wildlife Grant, the National Speleological Society, and The Center for North American Bat Research and Conservation at Indiana State University. We thank the bat field crew at ASU (P. Moore, P. Jordan, T. Klotz, C. Gerdes) for sample collection, H. Southe for manuscript editing, and T. James for laboratory assistance. The lipid profile data were acquired at Kansas Lipidomics Research Center (KLRC). Instrument acquisition and method development at KLRC was supported by NSF grants MCB 0455318, MCB 0920663, and DBI 0521587, Kansas INBRE (National Institute of Health Grant P20 RR16475 from the INBRE program of the National Center for Research Resources), National Science Foundation EPSCoR grant EPS-0236913, Kansas Technology Enterprise Corporation, and Kansas State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan L. Pannkuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pannkuk, E.L., Mcguire, L.P., Gilmore, D.F. et al. Glycerophospholipid Analysis of Eastern Red Bat (Lasiurus Borealis) Hair by Electrospray Ionization Tandem Mass Spectrometry. J Chem Ecol 40, 227–235 (2014). https://doi.org/10.1007/s10886-014-0388-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-014-0388-2

Keywords