Skip to main content
Log in

Maternal and Environmental Effects on Symbiont-Mediated Antimicrobial Defense

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Bacteria produce a remarkable diversity of bioactive molecules with antimicrobial properties. Despite the importance of such compounds for human medicine, little is known about the factors influencing antibiotic production in natural environments. Recently, several insects have been found to benefit from symbiont-produced antimicrobial compounds for defense against pathogenic microbes. In the European beewolf, Philanthus triangulum (Hymenoptera, Crabronidae), bacteria of the genus Streptomyces provide protection against pathogens by producing antimicrobials on the larval cocoon during hibernation, thereby significantly enhancing the survival probability of the beewolf larva. To investigate the effects of abiotic and biotic factors on antibiotic production, we exposed beewolf cocoons to different environmental conditions and quantified the amount of Streptomyces-produced antibiotics by using gas chromatography/mass spectrometry (GC/MS). The results revealed no significant influence of temperature, humidity, or pathogen load on the antibiotic amount, indicating that antibiotic production is not affected by current environmental conditions but rather may be optimized to serve as a reliable long-term protection during the unpredictable phase of beewolf hibernation. However, the amount of antibiotics was positively correlated with the symbiont population size on the cocoon, which in turn is affected by the number of Streptomyces cells provided by the mother into the brood cell. Additionally, we found a positive correlation between the amount of hydrocarbons and the number and length of bacterial cells in the antennal gland secretion, suggesting that maternal investment affects symbiont growth and, thus, antibiotic production on the larval cocoon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aitchison J (1986) The statistical analysis of compositional data. Chapman and Hall, London

    Book  Google Scholar 

  • Aminov RI (2009) The role of antibiotics and antibiotic resistance in nature. Environ Microbiol 11:2970–2988

    Article  PubMed  CAS  Google Scholar 

  • Antunes LCM, Ferreira RBR (2009) Intercellular communication in bacteria. Crit Rev Microbiol 35:69–80

    Article  PubMed  CAS  Google Scholar 

  • Bachofen R, Schenk A (1998) Quorum sensing autoinducers: do they play a role in natural microbial habitats? Microbiol Res 153:61–63

    Article  CAS  Google Scholar 

  • Barke J, Seipke RF, Gruschow S, Heavens D, Drou N, Bibb MJ, Goss RJ, Yu DW, Hutchings MI (2010) A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol 8:109

    Article  PubMed  Google Scholar 

  • Barratt EM, Oliver SG (1994) The effects of nutrient limitation on the synthesis of stress proteins in Streptomyces lividans. Biotechnol Lett 16:1231–1234

    CAS  Google Scholar 

  • Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience, New York

    Google Scholar 

  • Chater KF (1989) Multilevel regulation of Streptomyces differentiation. Trends Genet 5:372–377

    Google Scholar 

  • Chater KF, Biro S, Lee KJ, Palmer T, Schrempf H (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34:171–198

    Article  PubMed  CAS  Google Scholar 

  • Chhabra SR, Philipp B, Eberl L, Givskov M, Williams P, Camara M (2005) Extracellular communication in bacteria. Top Curr Chem 240:279–315

    Google Scholar 

  • Currie CR, Mueller UG, Malloch D (1999a) The agricultural pathology of ant fungus gardens. Proc Natl Acad Sci USA 96:7998–8002

    Article  PubMed  CAS  Google Scholar 

  • Currie CR, Scott JA, Summerbell RC, Malloch D (1999b) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701–704

    Article  CAS  Google Scholar 

  • Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62:5–16

    Article  PubMed  CAS  Google Scholar 

  • Dillon RJ, Vennard CT, Charnley AK (2000) Pheromones - Exploitation of gut bacteria in the locust. Nature 403:851–851

    Article  PubMed  CAS  Google Scholar 

  • Dufour N, Rao RP (2011) Secondary metabolites and other small molecules as intercellular pathogenic signals. FEMS Microbiol Lett 314:10–17

    Article  PubMed  CAS  Google Scholar 

  • Goettler W, Kaltenpoth M, Herzner G, Strohm E (2007) Morphology and ultrastructure of a bacteria cultivation organ: the antennal glands of female European beewolves, Philanthus triangulum (Hymenoptera, Crabronidae). Arthropod Struct Dev 36:1–9

    Article  PubMed  Google Scholar 

  • Goh EB, Yim G, Tsui W, McClure J, Surette MG, Davies J (2002) Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci USA 99:17025–17030

    Article  PubMed  CAS  Google Scholar 

  • Gräfe U (1983) Sekundärmetabolite als endogene Effektoren der mikrobiellen Cytodifferenzierung. Z Allg Mikrobiol 23:319–341

    Article  PubMed  Google Scholar 

  • Haeder S, Wirth R, Herz H, Spiteller D (2009) Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc Natl Acad Sci USA 106:4742–4746

    Article  PubMed  CAS  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Hassan MA, El-Naggar MY, Said WY (2001) Physiological factors affecting the production of an antimicrobial substance by Streptomyces violatus in batch cultures. Egypt J Biol 3:1–10

    Google Scholar 

  • Herzner G, Engl T, Strohm E (2011) Cryptic combat against competing microbes is a costly component of parental care in a digger wasp. Anim Behav 82:321–328

    Article  Google Scholar 

  • Higashide E (1984) The macrolides: properties, biosynthesis and fermentation. In: Vandamme EJ (ed) Biotechnology of industrial antibiotics. Marcel Dekker, New York, pp 451–510

  • Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang ZY, Jones RA, Miller SI (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436:1171–1175

    Article  PubMed  CAS  Google Scholar 

  • Howie WJ, Suslow TV (1991) Role of antibiotic biosynthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescence. Mol Plant Microbe Interact 4:393–399

    Article  CAS  Google Scholar 

  • Hurst GDD, Hutchence KJ (2010) Host defence: getting by with a little help from our friends. Curr Biol 20:R806–R808

    Article  PubMed  CAS  Google Scholar 

  • James PDA, Edwards C, Dawson M (1991) The effects of temperature, pH and growth-rate on secondary metabolism in Streptomyces thermoviolaceus grown in a chemostat. J Gen Microbiol 137:1715–1720

    Article  PubMed  CAS  Google Scholar 

  • Kaltenpoth M (2009) Actinobacteria as mutualists: general healthcare for insects? Trends Microbiol 17:529–535

    Article  PubMed  CAS  Google Scholar 

  • Kaltenpoth M, Engl T (2013) Defensive microbial symbionts in Hymenoptera. Funct Ecol. doi:10.1111/1365-2435.12089

  • Kaltenpoth M, Gottler W, Herzner G, Strohm E (2005) Symbiotic bacteria protect wasp larvae from fungal infestation. Curr Biol 15:475–479

    Article  PubMed  CAS  Google Scholar 

  • Kaltenpoth M, Schmitt T, Strohm E (2009) Hydrocarbons in the antennal gland secretion of female European beewolves, Philanthus triangulum (Hymenoptera, Crabronidae). Chemoecology 19:219–225

    Article  CAS  Google Scholar 

  • Kaltenpoth M, Goettler W, Koehler S, Strohm E (2010a) Life cycle and population dynamics of a protective insect symbiont reveal severe bottlenecks during vertical transmission. Evol Ecol 24:463–477

    Article  Google Scholar 

  • Kaltenpoth M, Schmitt T, Polidori C, Koedam D, Strohm E (2010b) Symbiotic streptomycetes in antennal glands of the South American digger wasp genus Trachypus (Hymenoptera, Crabronidae). Physiol Entomol 35:196–200

    Article  CAS  Google Scholar 

  • Kaltenpoth M, Yildirim E, Guerbuez MF, Herzner G, Strohm E (2012) Refining the roots of the beewolf-Streptomyces symbiosis: antennal symbionts in the rare genus Philanthinus (Hymenoptera, Crabronidae). Appl Environ Microbiol 78:822–827

    Article  PubMed  CAS  Google Scholar 

  • Kellner RLL (2002) Molecular identification of an endosymbiotic bacterium associated with pederin biosynthesis in Paederus sabaeus (Coleoptera: Staphylinidae). Insect Biochem Mol Biol 32:389–395

    Google Scholar 

  • Khokhlov AS, Tovarova II, Borisova LN, Pliner SA, Shevchen LN, Kornitsk EY, Ivkina NS, Rapoport IA (1967) A-Factor responsible for biosynthesis of streptomycin in mutant strains of Actinomyces streptomycini. Dokl Akad Nauk SSSR 177:232–235

    Google Scholar 

  • Koehler S, Doubský J, Kaltenpoth M (2013) Dynamics of symbiont-mediated antibiotic production reveal efficient long-term protection for beewolf offspring. Front Zool 10:3

    Article  PubMed  Google Scholar 

  • Kroiss J, Kaltenpoth M, Schneider B, Schwinger MG, Hertweck C, Maddula RK, Strohm E, Svatos A (2010) Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat Chem Biol 6:261–263

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Kim J, Shin SG, Hwang S (2006) Absolute and relative qPCR quantification of plasmid copy number in Escherichia coli. J Biotechnol 123:273–280

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Lee SY, Shin SG, Hwang S (2008) Real-time PCR determination of rRNA gene copy number: absolute and relative quantification assays with Escherichia coli. Appl Microbiol Biotechnol 78:371–376

    Article  PubMed  CAS  Google Scholar 

  • Linares JF, Gustafsson I, Baquero F, Martinez JL (2006) Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci USA 103:19484–19489

    Article  PubMed  CAS  Google Scholar 

  • Lopez D, Fischbach MA, Chu F, Losick R, Kolter R (2009) Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proc Natl Acad Sci USA 106:280–285

    Article  PubMed  CAS  Google Scholar 

  • Mattoso TC, Moreira DD, Samuels RI (2012) Symbiotic bacteria on the cuticle of the leaf-cutting ant Acromyrmex subterraneus subterraneus protect workers from attack by entomopathogenic fungi. Biol Lett 8:461–464

    Article  PubMed  Google Scholar 

  • Miall LM (1971) Biochemistry - General and special - Why antibiotics? Chem Ind London 49:1413–1414

  • Nanavaty J, Mortensen JE, Shryock TR (1998) The effects of environmental conditions on the in vitro activity of selected antimicrobial agents against Escherichia coli. Curr Microbiol 36:212–215

    Article  PubMed  CAS  Google Scholar 

  • Oh D-C, Poulsen M, Currie CR, Clardy J (2009a) Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. Nat Chem Biol 5:391–393

    Article  PubMed  CAS  Google Scholar 

  • Oh DC, Scott JJ, Currie CR, Clardy J (2009b) Mycangimycin, a polyene peroxide from a mutualist Streptomyces sp. Org Lett 11:633–636

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi Y, Yamazaki H, Kato JY, Tomono A, Horinouchi S (2005) AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci Biotechnol Biochem 69:431–439

    Article  PubMed  CAS  Google Scholar 

  • Oskay M (2011) Effects of some environmental conditions on biomass and antimicrobial metabolite production by Streptomyces sp., KGG32. Int J Agr Biol 13:317–324

    CAS  Google Scholar 

  • Poulsen M, Cafaro MJ, Erhardt DP, Little AEF, Gerardo NM, Tebbets B, Klein BS, Currie CR (2010) Variation in Pseudonocardia antibiotic defence helps govern parasite-induced morbidity in Acromyrmex leaf-cutting ants. Environ Microbiol Rep 2:534–540

    Article  PubMed  CAS  Google Scholar 

  • Poulsen M, Oh D-C, Clardy J, Currie CR (2011) Chemical analyses of wasp-associated Streptomyces bacteria reveal a prolific potential for natural products discovery. PLoS One 6:e16763

    Article  PubMed  CAS  Google Scholar 

  • Rasool KA, Wimpenny JWT (1982) Mixed continuous culture experiments with an antibiotic-producing Streptomycete and Escherichia coli. Microb Ecol 8:267–277

    Google Scholar 

  • Rosenheim JA, Nonacs P, Mangel M (1996) Sex ratios and multifaceted parental investment. Am Nat 148(3):501–535

    Article  Google Scholar 

  • Roughley RJ, Wahab FA, Sundram J (1992) Intrinsic resistance to streptomycin and spectinomycin among root-nodule bacteria from malaysian soils. Soil Biol Biochem 24:715–716

    Article  CAS  Google Scholar 

  • Sanchez L, Brana AF (1996) Cell density influences antibiotic biosynthesis in Streptomyces clavuligerus. Microbiology 142:1209–1220

    Article  PubMed  CAS  Google Scholar 

  • Schoenian I, Spiteller M, Ghaste M, Wirth R, Herz H, Spiteller D (2011) Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc Natl Acad Sci USA 108:1955–1960

    Article  PubMed  CAS  Google Scholar 

  • Scott JJ, Oh DC, Yuceer MC, Klepzig KD, Clardy J, Currie CR (2008) Bacterial protection of beetle-fungus mutualism. Science 322:63

    Article  PubMed  CAS  Google Scholar 

  • Seipke RF, Kaltenpoth M, Hutchings MI (2012) Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev 36:862–876

    Article  PubMed  CAS  Google Scholar 

  • Slattery M, Rajbhandari I, Wesson K (2001) Competition-mediated antibiotic induction in the marine bacterium Streptomyces tenjimariensis. Microb Ecol 41:90–96

    PubMed  CAS  Google Scholar 

  • Solecka J, Zajko J, Postek M, Rajnisz A (2012) Biologically active secondary metabolites from Actinomycetes. Cent Eur J Biol 7:373–390

    Article  CAS  Google Scholar 

  • Strohm E (2000) Factors affecting body size and fat content in a digger wasp. Oecologia 123(2):184–191

    Article  Google Scholar 

  • Strohm E, Linsenmair KE (1995) Leaving the cradle: how beewolves (Philanthus triangulum F.) obtain the necessary spatial information for emergence. Zoology 98:137–146

    Google Scholar 

  • Strohm E, Linsenmair KE (1999) Measurement of parental investment and sex allocation in the European beewolf Philanthus triangulum F. (Hymenoptera: Sphecidae). Behav Ecol Sociobiol 47:76–88

    Article  Google Scholar 

  • Strohm E, Marliani A (2002) The cost of parental care: prey hunting in a digger wasp. Behav Ecol 13:52–58

    Article  Google Scholar 

  • Strohm E, Herzner G, Kaltenpoth M, Boland W, Schreier P, Geiselhardt S, Peschke K, Schmitt T (2008) The chemistry of the postpharyngeal gland of female European beewolves. J Chem Ecol 34:575–583

    Article  PubMed  CAS  Google Scholar 

  • Strohm E, Kaltenpoth M, Herzner G (2010) Is the postpharyngeal gland of a solitary digger wasp homologous to ants? Evidence from chemistry and physiology. Insect Soc 57:285–291

    Article  Google Scholar 

  • Takano E (2006) Gamma-Butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 9:287–294

    Article  PubMed  CAS  Google Scholar 

  • Thomashow LS, Weller DM, Bonsall RF, Pierson LS (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol 56:908–912

    PubMed  CAS  Google Scholar 

  • Tsui WHW, Yim G, Wang HHM, McClure JE, Surette MG, Davies J (2004) Dual effects of MLS antibiotics: transcriptional modulation and interactions on the ribosome. Chem Biol 11:1307–1316

    Article  PubMed  CAS  Google Scholar 

  • Turpin PE, Dhir VK, Maycroft KA, Rowlands C, Wellington EMH (1992) The effect of Streptomyces species on the survival of Salmonella in soil FEMS. Microbiol Ecol 101:271–280

    Google Scholar 

  • Vanek Z, Mikulik K (1978) Microbial-growth and production of antibiotics. Folia Microbiol 23:309–328

    Article  CAS  Google Scholar 

  • Wiener P (1996) Experimental studies on the ecological role of antibiotic production in bacteria. Evol Ecol 10:405–421

    Article  Google Scholar 

Download references

Acknowledgments

We thank Benjamin Weiss and Sonia Rani for help with beewolf rearing, and we gratefully acknowledge financial support from the Max Planck Society (SK and MK) and the German Science Foundation (MK, DFG KA2846/2-1).

Authors’ Contributions

Both authors conceived of the study. SK performed the experiments and analyses of the antibiotics on beewolf cocoons, and MK collected and analyzed the AGS. Both authors wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kaltenpoth.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table S1

(PDF 56 kb)

Supplementary methods

(DOCX 27.4 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koehler, S., Kaltenpoth, M. Maternal and Environmental Effects on Symbiont-Mediated Antimicrobial Defense. J Chem Ecol 39, 978–988 (2013). https://doi.org/10.1007/s10886-013-0304-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0304-1

Keywords

Navigation