Journal of Chemical Ecology

, Volume 39, Issue 2, pp 283–297 | Cite as

Flavonoids: Their Structure, Biosynthesis and Role in the Rhizosphere, Including Allelopathy

Review Article

Abstract

Flavonoids are biologically active low molecular weight secondary metabolites that are produced by plants, with over 10,000 structural variants now reported. Due to their physical and biochemical properties, they interact with many diverse targets in subcellular locations to elicit various activities in microbes, plants, and animals. In plants, flavonoids play important roles in transport of auxin, root and shoot development, pollination, modulation of reactive oxygen species, and signalling of symbiotic bacteria in the legume Rhizobium symbiosis. In addition, they possess antibacterial, antifungal, antiviral, and anticancer activities. In the plant, flavonoids are transported within and between plant tissues and cells, and are specifically released into the rhizosphere by roots where they are involved in plant/plant interactions or allelopathy. Released by root exudation or tissue degradation over time, both aglycones and glycosides of flavonoids are found in soil solutions and root exudates. Although the relative role of flavonoids in allelopathic interference has been less well-characterized than that of some secondary metabolites, we present classic examples of their involvement in autotoxicity and allelopathy. We also describe their activity and fate in the soil rhizosphere in selected examples involving pasture legumes, cereal crops, and ferns. Potential research directions for further elucidation of the specific role of flavonoids in soil rhizosphere interactions are considered.

Keywords

Plant interference Roots Exudation Rhizosphere Secondary metabolites Phenolics 

References

  1. Agati, G., Azzarello, E., Pollastri, S., and Tattini, M. 2012. Flavonoids as antioxidants in plants: Location and functional significance. Plant. Sci. 196:67–76.PubMedCrossRefGoogle Scholar
  2. Aguilar, J. M. M., Ashby, A. M., Richards, A. J. M., Loake, G. J., Watson, M. D., and Shaw, C. H. 1988. Chemotaxis of Rhizobium legminosarum biovar phaseoli towards flavonoid inducers of the symbiotic nodulation genes. J. Gen. Microbiol. 134:2741–2746.Google Scholar
  3. Akiyama, K., Matsuoka, H., and Hayashi, H. 2002. Isolation and identification of a phosphate deficiency-induced C-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots. Mol. Plant-Microbe. Interact. 15:334–340.PubMedCrossRefGoogle Scholar
  4. Akiyama, K., Tanigawa, F., Kashihara, T., and Hayashi, H. 2010. Lupin pyranoisoflavones inhibiting hyphal development in arbuscular mycorrhizal fungi. Phytochemistry 71:1865–1871.PubMedCrossRefGoogle Scholar
  5. Armero, J., Requejo, R., Jorrin, J., Lopez-Valbuena, R., and Tena, M. 2001. Release of phytoalexins and related isoflavonoids from intact chickpea seedlings elicited with reduced glutathione at root level. Plant. Physiol. Biochem. 39:785–795.CrossRefGoogle Scholar
  6. Badri, D. V., Chaparro, J. M., Manter, D. K., Martinoia, E., and Vivanco, J. M. 2012. Influence of ATP-binding cassette transporters in root exudation of phytoalexins, signals, and in disease resistance. Front. Plant. Sci. 3:149.PubMedCrossRefGoogle Scholar
  7. Badri, D. V., Loyola-Vargas, V. M., Broeckling, C. D., De-La-pena, C., Jasinski, M., Santelia, D., Martinoia, E., Sumner, L. W., Banta, L. M., Stermitz, F., and Vivanco, J. M. 2008. Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant. Physiol. 146:762–771.PubMedCrossRefGoogle Scholar
  8. Badri, D. V., Quintana, N., El Kassis, E. G., Kim, H. K., Choi, Y. H., Sugiyama, A., Verpoorte, R., Martinoia, E., Manter, D. K., and Vivanco, J. M. 2009. An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol 151:2006–2017.PubMedCrossRefGoogle Scholar
  9. Baldridge, G. D., O’Neill, N. R., and Samac, D. A. 1998. Alfalfa (Medicago sativa L.) resistance to the root-lesion nematode, Pratylenchus penetrans: Defense-response gene mRNA and isoflavonoid phytoalexin levels in roots. Plant. Mol. Biol. 38:999–1010.PubMedCrossRefGoogle Scholar
  10. Banasiak, J., Biała, W., Staszków, A., Swarcewicz, B., Kepczynska, E., Figlerowicz, M., and Jasinski, M. 2013. A Medicago truncatula ABC transporter belonging to subfamily G modulates the level of isoflavonoids. J. Exp. Bot.. doi:10.1093/jxb/ers380.
  11. Barto, E. K., Weidenhamer, J. D., Cipollini, D., and Rillig, M. C. 2012. Fungal superhighways: Do common mycorrhizal networks enhance below ground communication? Trends. Plant. Sci. 17:633–637.PubMedCrossRefGoogle Scholar
  12. Batish, D. R., Singh, H. P., Kohli, R. K., and Dawra, G. P. 2006. Potential of allelopathy and allelochemicals for weed management, pp. 209–256, in H. P. Singh, D. R. Batish, and R. K. Kohli (eds.), Handbook of Sustainable Weed Management. Food Products Press, Binghamton.Google Scholar
  13. Bayliss, C., Canny, M. J., and McCully, M. E. 1997. Retention in situ and spectral analysis of fluorescent vacuole components in sections of plant tissue. Biotech. Histochem. 72:123–128.PubMedCrossRefGoogle Scholar
  14. Berhow, M. A. and Vaughn, S. R. 1999. Higher Plant Flavonoids: Biosynthesis and Chemical Ecology, pp. 423–438, in K. M. M. D. Inderjit and C. L. Foy (eds.), Principals and Practices in Plant Ecology- Allelochemical Interactions. CRC Press, Boca Raton.Google Scholar
  15. Bertholdsson, N.-O. 2004. Variation in allelopathic activity over 100 years of barley selection and breeding. Weed. Res. 44:78–86.CrossRefGoogle Scholar
  16. Bertholdsson, N.-O. 2005. Early vigour and allelopathy - Two useful traits for enhanced barley and wheat competitiveness against weeds. Weed. Res. 45:94–102.CrossRefGoogle Scholar
  17. Blount, J. W., Dixon, R. A., and Paiva, N. L. 1992. Stress responses in alfalfa (Medicago sativa L).16. Antifungal activity of medicarpin and its biosynthetic precursors—implications for the genetic manipulation of stress metabolites. Physiol. Mol. Plant Pathol. 41:333–349.CrossRefGoogle Scholar
  18. Brown, D. E., Rashotte, A. M., Murphy, A. S., Normanly, J., Tague, B. W., Peer, W. A., Taiz, L., and Muday, G. K. 2001. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol. 126:524–535.PubMedCrossRefGoogle Scholar
  19. Buer, C. S. and Djordjevic, M. A. 2009. Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana. J. Exp. Bot. 60:751–763.PubMedCrossRefGoogle Scholar
  20. Buer, C. S., Imin, N., and Djordjevic, M. A. 2010. Flavonoids: New roles for old molecules. J. Integ.. Plant. Biol. 52:98–111.CrossRefGoogle Scholar
  21. Buer, C. S., Muday, G. K., and Djordjevic, M. A. 2007. Flavonoids are differentially taken up and transported long distances in Arabidopsis. Plant Physiol. 145:478–490.PubMedCrossRefGoogle Scholar
  22. Carlsen, S. C. K., Pedersen, H. A., Spliid, N. H., and Fomsgaard, I. S. 2012. Fate in soil of flavonoids released from white clover (Trifolium repens L.). Appl. Environ. Soil. Sc 2012:1–10.CrossRefGoogle Scholar
  23. Cesco, S., Neumann, G., Tomasi, N., Pinton, R., and Weisskopf, L. 2010. Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329:1–25.CrossRefGoogle Scholar
  24. Chung, I. M. and Miller, D. A. 1995. Differences in autotoxicity among seven alfalfa cultivars. Agron. J. 87:596–600.CrossRefGoogle Scholar
  25. Cooper-Driver, G. 1980. The role of flavonoids and related compounds in fern systematics. Bull. Torrey. Botan. Club. 107:116–127.CrossRefGoogle Scholar
  26. Cooper, JE. 2004 Multiple responses of rhizobia to flavonoids during legume root infection, pp 1–62 in: Callow JA (ed) Advances in Botanical Research Incorporating Advances in Plant Pathology, Vol 41.Google Scholar
  27. Coronado, C., Zuanazzi, J. A. S., Sallaud, C., Quirion, J. C., Esnault, R., Husson, H. P., Kondorosi, A., and Ratet, P. 1995. Medicago sativa root flavonoid production is nitrogen regulated. Plant Physiol. 108:533–542.PubMedGoogle Scholar
  28. Cosgrove, D. and Undersander, D. 2003. pp. 1–2, Seeding Alfalfa Fields Back into Alfalfa. Extension Publication. Focus on Forage. University of Wisconsin, Madison.Google Scholar
  29. Curir, P., Dolci, M., and Galeotti, F. 2005. A phytoalexin-like flavonol involved in the carnation (Dianthus caryophyllus)-Fusarium oxysporum f Sp dianthi pathosystem. J. Phytopathol. 153:65–67.CrossRefGoogle Scholar
  30. Cushnie, T. P. T. and Lamb, A. J. 2011. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents 38:99–107.PubMedCrossRefGoogle Scholar
  31. Cutler, S. J., Varela, R. M., Palma, M., Macias, F. A., and Cutler, H. G. 2007. Isolation, Structural Elucidation and Synthesis Of Biologically Active Allelochemicals for Potential Use as Pharmaceuticals, pp. 1–398, in Y. Fujii and S. Hiradate (eds.), Allelopathy: New Concepts and Methodology. National Institute for Agro-environmental Sciences, Tsukuba.Google Scholar
  32. Dakora, F. D., Joseph, C. M., Phillips, D. A .(1993) Rhizobium meliloti alters flavonoid composition of alfalfa root exudates, p. 335 in: Palacios Rea (ed) New Horizons in Nitrogen Fixation. Kluwer Academic PublishersGoogle Scholar
  33. Davies, K. M., Albert, N. W., and Schwinn, K. E. 2012. From landing lights to mimicry: The molecular regulation of flower colouration and mechanisms for pigmentation patterning. Funct. Plant Biol. 39:619–638.CrossRefGoogle Scholar
  34. Delaux, P. M., Nanda, A. K., Mathe, C., Sejalon-Delmas, N., and Dunand, C. 2012. Molecular and biochemical aspects of plant terrestrialization. Perspect. Plant. Ecol. Evolu. Systemat. 14:49–59.CrossRefGoogle Scholar
  35. Dharmatilake, A. J. and Bauer, W. D. 1992. Chemotaxis of Rhizobium meliloti towards nodulation geneinducing compounds from alfalfa roots. Appl. Environ. Microbiol. 58:1153–1158.PubMedGoogle Scholar
  36. Dixon, R. A. and Paiva, N. L. 1995. Stress-induced phenylpropanoid metabolism. Plant. Cell. 7:1085–1097.PubMedGoogle Scholar
  37. Dixon, R. A. and Steele, C. L. 1999. Flavonoids and isoflavonoids—a gold mine for metabolic engineering. Trends Plant Sci. 4:394–400.PubMedCrossRefGoogle Scholar
  38. Djordjevic, M. A., Redmond, J. W., Batley, M., and Rolfe, B. G. 1987. Clovers secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii. EMBO J. 6:1173–1179.PubMedGoogle Scholar
  39. Duke, S.O., Bajsa, J., and Pan, Z. 2013. Omics methods for probing the mode of action of natural and synthetic phytotoxins. J. Chem. Ecol. 39:333–348.Google Scholar
  40. Edwards, R., Mizen, T., and Cook, R. 1995. Isoflavonoid conjugate accumulation in the roots of lucerne (Medicago sativa) seedlings following infection by the stem nematode (Ditylenchus dipsaci). Nematologica 41:51–66.CrossRefGoogle Scholar
  41. Erlejman, A. G., Verstraeten, S. V., Fraga, C. G., and Oteiza, P. I. 2004. The interaction of flavonoids with membranes: Potential determinant of flavonoid antioxidant effects. Free Radic. Res. 38:1311–1320.PubMedCrossRefGoogle Scholar
  42. Fang, C., Zhuang, Y., Xu, T., Li, Y., Li, Yue, and Lin, W. 2013. Changes in rice allelopathy and rhizosphere microflora by inhibiting rice phenylalanine amonia-lyase gene expression. J. Chem. Ecol. 39:204–212.Google Scholar
  43. Ferrer, J. L., Austin, M. B., Stewart, C., and Noe, J. P. 2008. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant. Physiol. Biochem. 46:356–370.PubMedCrossRefGoogle Scholar
  44. Feucht, W., Treutter, D., and Polster, J. 2012. Flavanols in nuclei of tree species: Facts and possible functions. Trees-Struct Funct 26:1413–1425.CrossRefGoogle Scholar
  45. Furuya, M., Garlston, A. W., and Stowe, B. B. 1962. Isolation from peas of co-factors and inhibitors of indolyl-3-acetic acid oxidase. Nature 193:456–457.PubMedCrossRefGoogle Scholar
  46. Gealy, D., Moldenhauer, K., and Duke, S. (2013). Root distribution and potential interactions between allelopathic rice, sprangletop (Leptochloa spp.), and barnyardgrass (Echinochloa crus-galli) based on 13C isotope discrimination analysis. J. Chem. Ecol. 39:186–203.Google Scholar
  47. Gressel, J., Hanafi, A., Head, G., Marasas, W., Obilana, B., Ochanda, J., Souissi, T., and Tzotzos, G. 2004. Major heretofore intractable biotic constraints to African food security that may be amenable to novel biotechnological solutions. Crop Protect. 23:661–689.CrossRefGoogle Scholar
  48. Hai, Z., Jin-Ming, G., Wei-Tao, L., Jing-Cheng, T., Xing-Chang, Z., Zhen-Guo, J., Yao-Ping, X., and Ming-An, S. 2008. Allelopathic substances from walnut (Juglans regia L.). Allelopathy J 21:425–432.Google Scholar
  49. Hancock, D. W. 2005. Autotoxicity in Alfalfa (Medicago sativa L.): Implications for Crop Production. University of Kentucky, Lexington KY, pp 1–17Google Scholar
  50. Harborne, J. B. 1973. Phytochemical Methods. Chatman and Hall, London.Google Scholar
  51. Harrison, M. J. 2005. Signaling in the arbuscular mycorrhizal symbiosis. Annu. Rev. Microbiol. 59:19–42.Google Scholar
  52. Hartwig, U. A., Joseph, C. M., and Phillips, D. A. 1991. Flavonoids released naturally from alfalfa seeds enhance growth rate of Rhizobium meliloti. Plant Physiol. 95:797–803.PubMedCrossRefGoogle Scholar
  53. Hartwig, U. A. and Phillips, D. A. 1991. Release and modification of nod gene-inducing flavonoids from alfalfa seeds. Plant Physiol. 95:804–807.PubMedCrossRefGoogle Scholar
  54. Hassan, S. and Mathesius, U. 2012. The role of flavonoids in root-rhizosphere signalling: Opportunities and challenges for improving plant-microbe interactions. J. Exp. Bot. 63:3429–3444.PubMedCrossRefGoogle Scholar
  55. Hawes, M. C., Brigham, L. A., Wen, F., Woo, H. H., Zhu, Z. 1998. Function of root border cells in plant health: Pioneers in the rhizosphere. Ann. Rev. Phytopathol. 36:311–327.CrossRefGoogle Scholar
  56. Heath, M. C. 2000. Hypersensitive response-related death. Plant Mol. Biol. 44:321–334.PubMedCrossRefGoogle Scholar
  57. Hedge, R. S. and Miller, D. A. 1992. Concentration dependency and stage of crop growth in alfalfa autotoxicity. Agron. J. 84:940–946.CrossRefGoogle Scholar
  58. Higgins, V. J. 1978. The effect of some pterocarpanoid phytoalexins on germ tube elongation of Stemphylium botryosum. Phytopathology 68:339–345.CrossRefGoogle Scholar
  59. Hodnick, W. F., Duval, D. L., and Pardini, R. S. 1994. Inhibition of mitochondrial respiration and cyanide-stimulated generation of reactive oxygen species by selected flavonoids. Biochem. Pharmacol. 47:573–580.PubMedCrossRefGoogle Scholar
  60. Hodnick, W. F., Milosavljevic, E. B., Nelson, J. H., and Pardini, R. S. 1988. Electrochemistry of flavonoids—relationships between redox potentials, inhibition of mitochondrial respiration and production of oxygen radicals by flavonoids. Biochem. Pharmacol. 37:2607–2611.PubMedCrossRefGoogle Scholar
  61. Hooper, A. M., Tsanuo, M. K., Chamberlain, K., Tittcomb, K., Scholes, J., Hassanali, A., Khan, Z. R., and Pickett, J. A. 2010. Isoschaftoside, a C-glycosylflavonoid from Desmodium uncinatum root exudate, is an allelochemical against the development of Striga. Phytochemistry 71:904–908.PubMedCrossRefGoogle Scholar
  62. Huang, L., Song, L., Xia, X., Mao, W., Shi, K., Zhou, Y., Yu, J. 2013. Plant-soil feedbacks and soil sickness: From mechanisms to application in agriculture. J. Chem. Ecol. 39:232-242.Google Scholar
  63. Hutzler, P., Fischbach, R., Heller, W., Jungblut, T. P., Reuber, S., Schmitz, R., Veit, M., Weissenboeck, G., and Schnitzler, J. P. 1998. Tissue localisation of phenolic compounds in plants by confocal laser scanning microscopy. J. Exp. Bot. 49:953–965.Google Scholar
  64. Jacobs, M. and Rubery, P. H. 1988. Naturally occuring auxin transport regulators. Science 241:346–349.PubMedCrossRefGoogle Scholar
  65. Jennings, J. A. 2001. Understanding Autotoxicity in Alfalfa. Wisconsin Forage Council: 2001 Proceedings. University of Wisconsin, Madison WI.Google Scholar
  66. Jennings, J. A. and Nelson, C. J. 2002. Zone of autotoxic influence around established alfalfa plants. Agron. J. 94:1104–1111.CrossRefGoogle Scholar
  67. Jia, Z. H., Zou, B. H., Wang, X. M., Qiu, J. A., Ma, H., Gou, Z. H., Song, S. S., and Dong, H. S. 2010. Quercetin-induced H(2)O(2) mediates the pathogen resistance against Pseudomonas syringae pv. Tomato DC3000 in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 396:522–527.PubMedCrossRefGoogle Scholar
  68. Jorgensen, K., Rasmussen, A. V., Morant, M., Nielsen, A. H., Bjarnholt, N., Zagrobelny, M., Bak, S., and Moller, B. L. 2005. Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr. Opin. Plant Biol. 8:280–291.PubMedCrossRefGoogle Scholar
  69. Juszczuk, I. M., Wiktorowska, A., Malusa, E., and Rychter, A. M. 2004. Changes in the concentration of phenolic compounds and exudation induced by phosphate deficiency in bean plants (Phaseolus vulgaris L.). Plant Soil 267:41–49.CrossRefGoogle Scholar
  70. Kato-Noguchi, H., Ino, T., Sata, N., and Yamamura, S. 2002. Isolation and identification of a potent allelopathic substance in rice root exudates. Physiol. Plant. 115:401–405.PubMedCrossRefGoogle Scholar
  71. Kato-Noguchi, H. and Peters, R. (2013). The role of momilactones in rice allelopathy, J. Chem. Ecology. 39:175–185.Google Scholar
  72. Khan, Z. R., Midega, C. A. O., Bruce, T. J. A., Hooper, A. M., and Pickett, J. A. 2010. Exploiting phytochemicals for developing a ’push-pull’ crop protection strategy for cereal farmers in Africa. J. Exp. Bot. 61:4185–4196.PubMedCrossRefGoogle Scholar
  73. Khan, Z. R., Pickett, J. A., Wadhams, L. J., Hassanali, A., and Midega, C. A. O. 2006. Combined control of Striga hermonthica and stemborers by maize-Desmodium spp. intercrops. Crop Protect 25:989–995.CrossRefGoogle Scholar
  74. Klein, R. R. and Miller, D. A. 1980. Allelopathy and its role in agriculture. Commun. Soil Sci. Plant Anal. 11:43–56.CrossRefGoogle Scholar
  75. Kong, C. H., Xu, X., Zhou, B., Hu, F., Zhang, C., and Zhang, M. 2004. Two compounds from allelopathic rice accession and their inhibitory activity on weeds and fungal pathogens. Phytochemistry 65:1123–1128.PubMedCrossRefGoogle Scholar
  76. Kong, C. H., Zhao, H., Xu, H., Wang, P., and Gu, Y. 2007. Activity and allelopathy of soil of flavone O-glycosides from rice. J. Agric. Food Chem. 55:6007–6012.PubMedCrossRefGoogle Scholar
  77. Kremer, R. J. and Ben-Hammouda, M. 2009. Allelopathic Plants. 19. Barley (Hordeum vulgare L.). Allelopathy J 24:225–241.Google Scholar
  78. Levizou, E., Karageorgou, P. K., Petropoulou, G., Grammatikopoulos, G., and Manetas, Y. 2004. Induction of ageotropic response in lettuce radical growth by epicuticular flavonoid aglycones of Dittrichia viscosa. Biol. Plant. 48:305–307.CrossRefGoogle Scholar
  79. Lovett, J. V. and Hoult, A. H. C. (eds.) 1995. Allelopathy and Self-Defense in Barley. American Chemical Society, Washington DC.Google Scholar
  80. Makoi, J. H. J. R. and Ndakidemi, P. A. 2007. Biological, ecological and agronomic significance of plant phenolic compounds in rhizosphere of the symbiotic legumes. Afr. J. Biotechnol. 6:1358–1368.Google Scholar
  81. Mandal, S. M., Chakraborty, D., and Dey, S. 2010. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant. Signal. Behav 5:359–368.PubMedCrossRefGoogle Scholar
  82. Marais, J. P. J., Deavours, B., Dixon, R. A., and Ferreira, D. 2007. The Stereochemistry of Flavonoids, pp. 1–35, in E. Grotewold (ed.), The Science of Flavonoids. Springer Press, New York.Google Scholar
  83. Masaoka, Y., Kojima, M., Sugihara, S., Yoshihara, T., Koshino, M., and Ichihara, A. 1993. Dissolution of ferric phosphates by alfalfa (Medicago sativa L.) root exudates. Plant Soil 155:75–78.CrossRefGoogle Scholar
  84. Mathesius, U. 2001. Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. J. Exp. Bot. 52:419–426.PubMedCrossRefGoogle Scholar
  85. Mathesius, U., Bayliss, C., Weinman, J. J., Schlaman, H. R. M., Spaink, H. P., Rolfe, B. G., McCully, M. E., and Djordjevic, M. A. 1998. Flavonoids synthesized in cortical cells during nodule initiation are early developmental markers in white clover. Mol. Plant-Microbe. Interact. 11:1223–1232.CrossRefGoogle Scholar
  86. Miller, D. 1996. Allelopathy in forage crop systems. Agron. J. 88:854–859.CrossRefGoogle Scholar
  87. Mohney, B. K., Matz, T., Lamoreaux, J., Wilcox, D. S., Gimsing, A. L., Mayer, P., and Weidenhamer, J. D. 2009. In situ silicone tube microextraction: A new method for undisturbed sampling of root-exuded thiophenes from marigold (Tagetes erecta L.) in soil. J. Chem. Ecol. 35:1279–1287.PubMedCrossRefGoogle Scholar
  88. Morandi, D., le Signor, C., Gianinazzi-Pearson, V., and Duc, G. 2009. A Medicago truncatula mutant hyper-responsive to mycorrhiza and defective for nodulation. Mycorrhiza 19:435–441.PubMedCrossRefGoogle Scholar
  89. Mwaja, V., Masiunas, J. B., and Weston, L. A. 1995. Effects of fertility on biomass, phytotoxicity and allelochemical content of cereal rye. J. Chem. Ecol. 21:81–96.CrossRefGoogle Scholar
  90. Naoumkina, M. and Dixon, R. A. 2008. Subcellular localization of flavonid natural products: A signalling function? Plant. Signal. Behav. 3:573–575.CrossRefGoogle Scholar
  91. Naoumkina, M. A., Zhao, Q. A., Gallego-Giraldo, L., Dai, X. B., Zhao, P. X., and Dixon, R. A. 2010. Genome-wide analysis of phenylpropanoid defence pathways. Mol. Plant. Pathol. 11:829–846.PubMedGoogle Scholar
  92. Oleszek, W. and Jurzysta, M. 1987. The allelopathic potential of alfalfa root mediacagenic acid glycosides and their fate in soil environments. Plant Soil 98:67–80.CrossRefGoogle Scholar
  93. Peck, M. C., Fisher, R. F., and Long, S. R. 2006. Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. J. Bacteriol. 188:5417–5427.PubMedCrossRefGoogle Scholar
  94. Peer, W. A., Brown, D. E., Tague, B. W., Muday, G. K., Taiz, L., and Murphy, A. S. 2001. Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis. Plant Physiol. 126:536–548.PubMedCrossRefGoogle Scholar
  95. Peer, W. A. and Murphy, A. S. 2007. Flavonoids and auxin transport: Modulators or regulators? Trends Plant Sci. 12:556–563.PubMedCrossRefGoogle Scholar
  96. Peters, N. K. and Long, S. R. 1988. Alfalfa root exudates and compounds which promote or inhibit induction of Rhizobium meliloti nodulation genes. Plant Physiol. 88:396–400.PubMedCrossRefGoogle Scholar
  97. Plaper, A., Golob, M., Hafner, I., Oblak, M., Solmajer, T., and Jerala, R. 2003. Characterization of quercetin binding site on DNA gyrase. Biochem. Biophys. Res. Commun. 306:530–536.PubMedCrossRefGoogle Scholar
  98. Pollastri, S. and Tattini, M. 2011. Flavonols: Old compounds for old roles. Ann. Bot. 108:1225–1233.PubMedCrossRefGoogle Scholar
  99. Pueppke, S. G. and Vanetten, H. D. 1974. Pisatin accumulation and lesion development in peas infected with Aphanomyces euteiches. Fusarium solani f. sp. pisi or Rhizoctonia solani. Phytopathology 64:1433–1440.CrossRefGoogle Scholar
  100. Putnam, A. R. and Defrank, J. 1983. Use of allelopathic cover crops to inhibit weeds. Crop Protect. 2:173–182.CrossRefGoogle Scholar
  101. Rao, A. S. 1990. Root flavonoids. Bot. Rev. 56:1–84.CrossRefGoogle Scholar
  102. Rao, J. R. and Cooper, J. E. 1994. Rhizobia catabolize nod gene-inducing flavonoids via C-ring fission mechanisms. J. Bacteriol. 176:5409–5413.PubMedGoogle Scholar
  103. Rao, J. R. and Cooper, J. E. 1995. Soybean nodulating rhizobia modify nod gene inducers daidzein and genistein to yield aromatic products that can influence gene-inducing activity. Mol. Plant-Microbe Interact. 8:855–862.CrossRefGoogle Scholar
  104. Redmond, J. R., Batley, M., Djordjevic, M. A., Innes, R. W., Keumpel, P. L., and Rolfe, B. G. 1986. Flavones induce expression of nodulation genes in Rhizobium. Nature 323:632–635.CrossRefGoogle Scholar
  105. Rice, E. L. (ed.) 1984. Allelopathy. Academic, Orlando.Google Scholar
  106. Saslowsky, D. E., Warek, U., and Winkel, B. S. J. 2005. Nuclear localization of flavonoid enzymes in Arabidopsis. J. Biol. Chem. 280:23735–23740.PubMedCrossRefGoogle Scholar
  107. Scervino, J. M., Ponce, M. A., Erra-Bassells, R., Bompadre, M. J., Vierheilig, H., Ocampo, J. A., and Godeas, A. 2006. Glycosidation of apigenin results in a loss of its activity on different growth parameters of arbuscular mycorrhizal fungi from the genus Glomus and Gigaspora. Soil Biol. Biochem. 38:2919–2922.CrossRefGoogle Scholar
  108. Scervino, J. M., Ponce, M. A., Erra-Bassells, R., Bornpadre, J., Vierheilig, H., Ocampo, J. A., and Godeas, A. 2007. The effect of flavones and flavonols on colonization of tomato plants by arbuscular mycorrhizal fungi of the genera Gigaspora and Glomus. Can. J. Microbiol. 53:702–709.PubMedCrossRefGoogle Scholar
  109. Scervino, J. M., Ponce, M. A., Erra-Bassells, R., Vierheilig, H., Ocampo, J. A., and Godeas, A. 2005a. Flavonoids exclusively present in mycorrhizal roots of white clover exhibit a different effect on arbuscular mycorrhizal fungi than flavonoids exclusively present in non-mycorrhizal roots of white clover. J. Plant. Interact. 1:15–22.CrossRefGoogle Scholar
  110. Scervino, J. M., Ponce, M. A., Erra-Bassells, R., Vierheilig, H., Ocampo, J. A., and Godeas, A. 2005b. Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycol. Res. 109:789–794.PubMedCrossRefGoogle Scholar
  111. Schmidt, P. E., Broughton, W. J., and Werner, D. 1994. Nod-factors of Bradyrhizobium japonicum and Rhizobium sp. NGR234 induce flavonoid accumulation in soybean root exudate. Molec. Plant. Microbe. Interact. 7:384–390.CrossRefGoogle Scholar
  112. Shaw, L. J. and Hooker, J. E. 2008. The fate and toxicity of the flavonoids naringenin and formononetin in soil. Soil Biol. Biochem. 40:528–536.CrossRefGoogle Scholar
  113. Shaw, L. J., Morris, P., Hooker, J. E. 2006. Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Env. Microbiol. 8:1867–1880.CrossRefGoogle Scholar
  114. Shulz, M., Marocco, A., Tabaglio, V., and Macias, F.A. 2013. Benzoxazinoids in rye allelopathy—From discovery to application in sustainable weed control and organic farming. J. Chem. Ecol. 39:154–174.Google Scholar
  115. Siqueira, J. O., Safir, G. R., and Nair, M. G. 1991. Stimulation of vesicular-arbuscular mycorrhizae formation and growth of white clover by flavonoid compounds. New Phytol. 118:87–93.CrossRefGoogle Scholar
  116. Soto-Vaca, A., Gutierrez, A., Losso, J. N., Xu, Z. M., and Finley, J. W. 2012. Evolution of phenolic compounds from color and flavor problems to health benefits. J. Agric. Food Chem. 60:6658–6677.CrossRefGoogle Scholar
  117. Sosa, T., Valares, C., Alias, J. C., and Lobon, N. C. 2010. Persistence of flavonoids in Cictus landanifer soils. Plant Soil 337:51–63.CrossRefGoogle Scholar
  118. Star, A. E. 1980. Frond exudate flavonoids as allelopathic agents in Pityrogramma. Bull. Torrey Botan. Club 107:146–153.CrossRefGoogle Scholar
  119. Steinkellner, S., Lendzemo, V., Langer, I., Schweiger, P., Khaosaad, T., Toussaint, J.-P., and Vierheilig, H. 2007. Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12:1290–1306.PubMedCrossRefGoogle Scholar
  120. Stenlid, G. 1963. The effects of flavonoid compounds on oxidative phosphorylation and on the enzymatic destruction of indoleacetic acid. Physiol. Plant. 16:110–121.CrossRefGoogle Scholar
  121. Stenlid, G. 1968. On the physiological effects of phloridzin, phloretin and some related substances upon higher plants. Physiol. Plant. 21:882–894.CrossRefGoogle Scholar
  122. Stenlid, G. 1976. Effects of flavonoids on the polar transport of auxins. Physiol. Plant. 38:262–266.CrossRefGoogle Scholar
  123. Subramanian, S., Graham, M. Y., Yu, O., and Graham, T. L. 2005. RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol. 137:1345–1353.PubMedCrossRefGoogle Scholar
  124. Subramanian, S., Stacey, G., and Yu, O. 2006. Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant J. 48:261–273.PubMedCrossRefGoogle Scholar
  125. Sugiyama, A., Shitan, N., and Yazaki, K. 2007. Involvement of a soybean ATP-binding cassette—Type transporter in the secretion of genistein, a signal flavonoid in legume-Rhizobium Symbiosis(1). Plant Physiol. 144:2000–2008.PubMedCrossRefGoogle Scholar
  126. Taylor, L. P. and Grotewold, E. 2005. Flavonoids as developmental regulators. Curr. Opin. Plant Biol. 8:317–323.PubMedCrossRefGoogle Scholar
  127. Tesar, M. B. 1993. Delayed seeding of alfalfa avoids autotoxicity after plowing or glyphosate treatment of established stands. Agron. J. 85:256–263.CrossRefGoogle Scholar
  128. Tsai, S. M. and Phillips, D. A. 1991. Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitro. Appl. Environ. Microbiol. 57:1485–1488.PubMedGoogle Scholar
  129. Tsuzuki, E., Miura, M., Sakaki, N., and Yoshino, T. 1999. Study on the control of weeds by using higher plants. Rep. Kyushu Branch Crop Sci. Soc. Japan 65:39–40.Google Scholar
  130. Wasson, A. P., Pellerone, F. I., and Mathesius, U. 2006. Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18:1617–1629.PubMedCrossRefGoogle Scholar
  131. Weidenhamer, J. D., Boes, P. D., and Wilcox, D. S. 2009. Solid-phase root zone extraction (SPRE): A new methodology for measurement of allelochemical dynamics in soil. Plant Soil 322:177–186.CrossRefGoogle Scholar
  132. Weston, L. A. 1996. Utilization of allelopathy for weed management in agroecosystems. Agron. J. 88:860–866.CrossRefGoogle Scholar
  133. Weston, L. A. 2005. History and current trends in the use of allelopathy for weed management. HortTechnology 15:529–534.Google Scholar
  134. Weston, L., Alsaadawi, I.S., and Baerson, S.C. 2013. Sorghum allelopathy—From ecosystem to molecule. J. Chem. Ecol. 39:142–153.Google Scholar
  135. Weston, L. A. and Duke, S. O. 2003. Weed and crop allelopathy. Crit. Rev. Plant Sci. 22:367–389.CrossRefGoogle Scholar
  136. Williams, C. A. and Grayer, R. J. 2004. Anthocyanins and other flavonoids. Nat. Prod. Rep. 21:539–573.PubMedCrossRefGoogle Scholar
  137. Winkel-Shirley, B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126:485–493.PubMedCrossRefGoogle Scholar
  138. Winkel, B. S. J. 2004. Metabolic channeling in plants. Annu. Rev. Plant Biol. 55:85–107.PubMedCrossRefGoogle Scholar
  139. Worthington, M. and Reberg-Horton, S. C. 2013. Breeding cereal crops for enhanced weed suppression: Optimizing allelopathy and competitive ability. J. Chem. Ecol. 39:213–231.Google Scholar
  140. Wuyts, N., Swennen, R., and de Waele, D. 2006. Effects of plant phenylpropanoid pathway products and selected terpenoids and alkaloids on the behaviour of the plant-parasitic nematodes Radopholus similis, Pratylenchus penetrans and Meloidogyne incognita. Nematology 8:89–101.CrossRefGoogle Scholar
  141. Xuan, T. D. and Tsuzuki, E. 2002. Varietal differences in allelopathic potential of alfalfa. J. Agronomy and Crop Science 188:2–7.CrossRefGoogle Scholar
  142. Yoshikawa, M., Gemma, H., Sobajima, Y., and Masago, H. 1986. Rooting cofactor activity of plant phytoalexins. Plant Physiol. 82:864–866.PubMedCrossRefGoogle Scholar
  143. Yu, O., Shi, J., Hession, A. O., Maxwell, C. A., McGonigle, B., and Odell, J. T. 2003. Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63:753–763.PubMedCrossRefGoogle Scholar
  144. Zhang, J., Subramanian, S., Stacey, G., and Yu, O. 2009. Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J. 57:171–183.PubMedCrossRefGoogle Scholar
  145. Zhang, H., Mallik, A., and Zeng, R. 2013. Control of Panama disease of banana by rotating and intercropping with Chinese chive (Allium tuberosum Rottler): Role of plant volatiles. J. Chem. Ecol. 39:243–252.Google Scholar
  146. Zhao, J. and Dixon, R. A. 2009. MATE transporters facilitate vacuolar uptake of epicatechin 3 ′-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell 21:2323–2340.PubMedCrossRefGoogle Scholar
  147. Zuanazzi, J. A. S., Clergeot, P. H., Quirion, J. C., Husson, H. P., Kondorosi, A., and Ratet, P. 1998. Production of Sinorhizobium meliloti nod gene activator and repressor flavonoids from Medicago sativa roots. Mol. Plant-Microbe Interact. 11:784–794.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.EH Graham CentreCharles Sturt UniversityWagga WaggaAustralia
  2. 2.Division of Plant Science, Research School of BiologyAustralian National UniversityCanberraAustralia

Personalised recommendations