Skip to main content

Advertisement

Log in

Breeding Cereal Crops for Enhanced Weed Suppression: Optimizing Allelopathy and Competitive Ability

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Interest in breeding grain crops with improved weed suppressive ability is growing in response to the evolution and rapid expansion of herbicide resistant populations in major weeds of economic importance, environmental concerns, and the unmet needs of organic producers and smallholder farmers without access to herbicides. This review is focused on plant breeding for weed suppression; specifically, field and laboratory screening protocols, genetic studies, and breeding efforts that have been undertaken to improve allelopathy and competition in rice, wheat, and barley. The combined effects of allelopathy and competition determine the weed suppressive potential of a given cultivar, and research groups worldwide have been working to improve both traits simultaneously to achieve maximum gains in weed suppression. Both allelopathy and competitive ability are complex, quantitatively inherited traits that are heavily influenced by environmental factors. Thus, good experimental design and sound breeding procedures are essential to achieve genetic gains. Weed suppressive rice cultivars are now commercially available in the U.S. and China that have resulted from three decades of research. Furthermore, a strong foundation has been laid during the past 10 years for the breeding of weed suppressive wheat and barley cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acciaresi, H. A., Chidichimo, H. O., and Sarandon, S. J. 2001. Traits related to competitive ability of wheat (Triticum aestivum) varieties against Italian Ryegrass (Lolium multiflorum). Biol. Agric. Hortic. 19:275–286.

    Article  Google Scholar 

  • Addisu, M., Snape, J. W., Simmonds, J. R., and Gooding, M. J. 2009. Reduced height (Rht) and photoperiod insensitivity (Ppd) allele associations with establishment and early growth of wheat in contrasting production systems. Euphytica 166:249–267.

    Article  CAS  Google Scholar 

  • Alsaadawi, I. S., Aluqaili, J. K., Alrubeaa, A. J., and Alhadithy, S. M. 1986. Allelopathic suppression of weeds and nitrification by selected cultivars of Sorghum bicolor (L) Moench. J. Chem. Ecol. 12:209–219.

    Article  Google Scholar 

  • Balyan, R. S., Malik, R. K., Panwar, R. S., and Singh, S. 1991. Competitive ability of winter-wheat cultivars with wild oat (Avena ludoviciana). Weed Sci. 39:154–158.

    Google Scholar 

  • Belz, R. G. 2007. Allelopathy in crop/weed interactions–an update. Pest Manag. Sci. 63:308–326.

    Article  PubMed  CAS  Google Scholar 

  • Belz, R. G. and Hurle, K. 2004. A novel laboratory screening bioassay for crop seedling allelopathy. J. Chem. Ecol. 30:175–198.

    Article  PubMed  CAS  Google Scholar 

  • Beres, B. L., Clayton, G. W., Harker, K. N., Stevenson, F. C., Blackshaw, R. E., and Graf, R. J. 2010. A sustainable management package to improve winter wheat production and competition with weeds. Agron. J. 102:649–657.

    Article  Google Scholar 

  • Bertholdsson, N. O. 2004. Variation in allelopathic activity over 100 years of barley selection and breeding. Weed Res. 44:78–86.

    Article  Google Scholar 

  • Bertholdsson, N. O. 2005. Early vigour and allelopathy–two useful traits for enhanced barley and wheat competitiveness against weeds. Weed Res. 45:94–102.

    Article  Google Scholar 

  • Bertholdsson, N. O. 2007. Varietal variation in allelopathic activity in wheat and barley and possibilities for use in plant breeding. Allelopathy J. 19:193–201.

    Google Scholar 

  • Bertholdsson, N. O. 2010. Breeding spring wheat for improved allelopathic potential. Weed Res. 50:49–57.

    Article  Google Scholar 

  • Bertholdsson, N. O. 2011. Use of multivariate statistics to separate allelopathic and competitive factors influencing weed suppression ability in winter wheat. Weed Res. 51:273–283.

    Article  Google Scholar 

  • Bertholdsson, N. O., Andersson, S. C., and Merker, A. 2012. Allelopathic potential of Triticum spp., Secale spp. and Triticosecale spp. and use of chromosome substitutions and translocations to improve weed suppression ability in winter wheat. Plant Breed. 131:75–80.

    Article  CAS  Google Scholar 

  • Bertin, C., Weston, L. A., and Kaur, H. 2008. Allelopathic crop development: Molecular and traditional plant breeding approaches. Plant Breed. Rev. 30:231–258.

    Article  CAS  Google Scholar 

  • Blackshaw, R. E. 1994. Differential competitive ability of winter-wheat cultivars against downy brome. Agron. J. 86:649–654.

    Article  Google Scholar 

  • Brooks, A. M., Danehower, D. A., Murphy, J. P., Reberg-Horton, S. C., and Burton, J. D. 2012. Estimation of heritability of benzoxazinoid production in rye (Secale cereale) using gas chromatographic analysis. Plant Breed. 131:104–109.

    Article  CAS  Google Scholar 

  • Carey, V. F., Hoagland, R. E., and Talbert, R. E. 1995. Verification and distribution of propanil-resistant barnyardrass (Echinochloa crus-galli) in Arkansas. Weed Technol. 9:366–372.

    Google Scholar 

  • Challaiah, Burnside, O. C., Wicks, G. A., and Johnson, V. A. 1986. Comptetition between winter-wheat (Triticum aestivum) cultivars and downy brome (Bromus tectorum). Weed Sci. 34:689–693.

    Google Scholar 

  • Champion, G. T., Froud-Williams, R. J., and Holland, J. M. 1998. Interactions between wheat (Triticum aestivum L.) cultivar, row spacing, and density and the effect on weed suppression and crop yield. Ann. Appl. Biol. 133:443–453.

    Article  Google Scholar 

  • Chauhan, B. S. 2012. Weed ecology and weed management strategies for dry-seeded rice in Asia. Weed Technol. 26:1–13.

    Article  Google Scholar 

  • Cheema, Z. A., Mushtaq, M. N., Farooq, M., Hussain, A., and Islam Ud, D. 2009. Purple nutsedge management with allelopathic sorghum. Allelopathy J. 23:305–312.

    Google Scholar 

  • Chen, X. H., Hu, F., and Kong, C. H. 2008. Varietal improvement in rice allelopathy. Allelopathy J. 22:379–384.

    CAS  Google Scholar 

  • Chou, C. H., Chang, F. J., and Oka, H. I. 1991. Allelopathic potential of wild rice (Oryza perennis). Taiwania 36:201–210.

    Google Scholar 

  • Christensen, S. 1995. Weed suppression ability of spring barley varieties. Weed Res. 35:241–247.

    Article  Google Scholar 

  • Coleman, R. D., Gill, G. S., and Rebetzke, G. J. 2001. Identification of quantitative trait loci for traits conferring weed competitiveness in wheat (Triticum aestivum L.). Aust. J. Agric. Res. 52:1235–1246.

    Article  CAS  Google Scholar 

  • Courtois, B. and Olofsdotter, M. 1998. Incorporating the allelopathy trait in upland rice breeding programs, pp. 57–68, in M. Olofsdotter (ed.), Allelopathy in Rice. IRRI Publishing, Los Banos, the Philippines.

    Google Scholar 

  • Cousens, R. D. and Fletcher, D. J. 1990. Experimental design for screening competitiveness of crop cultivars, pp 163–165 in Proceedings of the 9th Australian Weeds Conference. Crop Science Society of Australia, with assistance from the Wheat Research Council of Australia, Adelaide, Australia.

  • Cousens, R. D. and Mokhtari, S. 1998. Seasonal and site variability in the tolerance of wheat cultivars to interference from Lolium rigidum. Weed Res. 38:301–307.

    Article  Google Scholar 

  • Dilday, R. H., Nastasi, P., Lin, J., and Smith, R. J. 1991. Allelopathic activity in rice (Oryza sativa) against ducksalad (Heteranthera limosa (Sw.) Wild.), pp 193–201, in J. D. Hansen, M. J. Shaffer, D. A. Ball and C. V. Cole (eds.), Sustainable Agriculture for the Great Plains, Symposium Proceedings. U.S. Department of Agriculture, Agricultural Research Service, ARS 89.

  • Dilday, R. H., Lin, J., and Yan, W. 1994. Identification of allelopathy in the USDA-ARS rice germplasm collection. Aust. J. Exp. Agric. 34:907–910.

    Article  Google Scholar 

  • Dilday, R., Yan, W., Moldenhauer, K., and Gravois, K. 1998. Allelopathic activity in rice for controlling major aquatic weeds, pp. 7–26, in M. Olofsdotter (ed.), Allelopathy in Rice. IRRI Publishing, Los Banos, the Philippines.

    Google Scholar 

  • Donald, C. M. and Hamblin, J. 1976. Biological yield and harvest index of cereals as agronomic and plant breeding criteria. Adv. Agron. 28:361–405.

    Article  Google Scholar 

  • Drews, S., Neuhoff, D., and Kopke, U. 2009. Weed suppression ability of three winter wheat varieties at different row spacing under organic farming conditions. Weed Res. 49:526–533.

    Article  Google Scholar 

  • Duke, S. O., Scheffler, B. E., Dayan, F. E., Weston, L. A., and Ota, E. 2001. Strategies for using transgenes to produce allelopathic crops. Weed Technol. 15:826–834.

    Article  CAS  Google Scholar 

  • Duke, S. O., Bajasa, J., and Pan, Z. 2013. Omics method for probing the mode of action of natural and synthetic phytotoxins. J. Chem. Ecol. 39:333–348.

    Google Scholar 

  • Ebana, K., Yan, W. G., Dilday, R. H., Namai, H., and Okuno, K. 2001. Analysis of QTL associated with the allelopathic effect of rice using water-soluble extracts. Breed. Sci. 51:47–51.

    Article  CAS  Google Scholar 

  • Einhellig, F. A. 1996. Interactions involving allelopathy in cropping systems. Agron. J. 88:886–893.

    Article  CAS  Google Scholar 

  • Falconer, D. S. 1981. Introduction to Quantitative Genetics. Longman, New York.

    Google Scholar 

  • Fang, C. X., Xiong, J., Qiu, L., Wang, H. B., Song, B. Q., He, H. B., Lin, R. Y., and Lin, W. X. 2009. Analysis of gene expressions associated with increased allelopathy in rice (Oryza sativa L.) induced by exogenous salicylic acid. Plant Growth Regul. 57:163–172.

    Article  CAS  Google Scholar 

  • Fay, P. K. and Duke, W. B. 1977. Assessment of the allelopathic potential in Avena germplasm. Weed Sci. 25:224–228.

    CAS  Google Scholar 

  • Fehr, W. R., Fehr, E. L., and Jessen, H. J. 1987. Principles of Cultivar Development: Theory and Technique, V.1. Macmillan Publishing Company, New York.

    Google Scholar 

  • Fitter, A. 2003. Making allelopathy respectable. Science 301:1337–1338.

    Article  PubMed  CAS  Google Scholar 

  • Fofana, B. and Rauber, R. 2000. Weed suppression ability of upland rice under low-input conditions in West Africa. Weed Res. 40:271–280.

    Article  Google Scholar 

  • Frey, M., Schullehner, K., Dick, R., Fiesselmann, A., and Gierl, A. 2009. Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants. Phytochemistry 70:1645–1651.

    Article  PubMed  CAS  Google Scholar 

  • Fujii, Y. 1992. The potential biological control of paddy weeds with allelopathy: Allelopathic effect of some rice varieties, pp 305–320, in Proceedings of International Symposium on Biological Control and Integrated Management of Paddy and Aquatic Weeds in Asia. National Agricultural Research Centre of Japan, Tsukuba, Japan.

  • Gallais, A. 1984. Use of indirect selection in plant breeding, pp 45–60, in W. Lange, A. C. Zeven and N. G. Hogenboom (eds.), 10th Eucarpia Congress: Efficiency in Plant Breeding. Wageningen, the Netherlands.

  • Galon, L., Tironi, S. P., Rocha, P. R. R., Concenco, G., Silva, A. F., Vargas, L., Silva, A. A., Ferreira, E. A., Minella, E., Soares, E. R., and Ferreira, F. A. 2011. Competitive ability of barley cultivars against ryegrass. Planta Daninha 29:771–781.

    Article  Google Scholar 

  • Garris, A. J., Tai, T. H., Coburn, J., Kresovich, S., and McCouch, S. 2005. Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638.

    Article  PubMed  CAS  Google Scholar 

  • Gealy, D. R. and Moldenhauer, K. A. K. 2012. Use of C-13 isotope discrimination analysis to quantify distribution of barnyardgrass and rice roots in a 4-year study of weed-suppressive rice. Weed Sci. 60:133–142.

    Article  CAS  Google Scholar 

  • Gealy, D. R. and Yan, W. 2012. Weed suppression potential of ‘Rondo’ and other indica rice germplasm lines. Weed Technol. 26:524–527.

    Article  Google Scholar 

  • Gealy, D. R., Wailes, E. J., Estorninos, L. E., and Chavez, R. S. C. 2003. Rice cultivar differences in suppression of barnyardgrass (Echinochloa crus-galli) and economics of reduced propanil rates. Weed Sci. 51:601–609.

    Article  CAS  Google Scholar 

  • Gealy, D. R., Estorninos, L. E., Gbur, E. E., and Chavez, R. S. C. 2005. Interference interactions of two rice cultivars and their F3 cross with barnyardgrass (Echinochloa crus-galli) in a replacement series study. Weed Sci. 53:323–330.

    Article  CAS  Google Scholar 

  • Gealy, D. R., Ottis, B., Talbert, R., Moldenhauer, K., and Yan, W. 2005. Evaluation and improvement of allelopathic rice germplasm at Stuttgart, Arkansas, USA, pp 157–163, in J. D. I Harper, M. An, H. Wu and J. H. Kent (eds.), Proceedings of the 4th World Congress on Allelopathy. Aug. 21–26, 2005, International Allelopathy Society. Wagga Wagga, NSW, Australia.

  • Gealy, D. R., Moldenhauer, K. K., and Mattice, J. D. 2010. Weed control and yield potential for a promising rice line, STG06L-35-061, selected from crosses between weed-suppressive indicas and commercial long-grain rice, p 155, in Proceedings of the 33rd Rice Technical Working Group Meeting, Feb. 22–24, 2010, Biloxi, MS.

  • Gealy, D. R., Moldenhauer, K. A. K., and Jia, M. H. 2013. Field performance of STG06L-35-061, a new genetic resource developed from crosses between weed-suppressive indica rice and commercial southern U.S. long-grains. Plant Soil S48 (In Press).

  • Gibson, K. D., Fischer, A. J., Foin, T. C., and Hill, J. E. 2003. Crop traits related to weed suppression in water-seeded rice (Oryza sativa L.). Weed Sci. 51:87–93.

    Article  CAS  Google Scholar 

  • Goldberg, D. 1990. Components of resource competition in plant communities, pp. 27–49, in J. Grace and D. Tilman (eds.), Perspectives in Plant Competition. Academic, San Diego, CA.

    Google Scholar 

  • Guneyli, E., Burnside, O. C., and Nordquis, P. T. 1969. Influence of seedling characteristics on weed competitive ability of sorghum hybrids and inbred lines. Crop. Sci. 9:713–716.

    Article  Google Scholar 

  • Harlan, J. R. and Dewet, J. M. J. 1971. Toward a rational classification of cultivated plants. Taxon 20:509–517.

    Article  Google Scholar 

  • Harper, J. L. 1977. Population Biology of Plants. Academic, New York.

    Google Scholar 

  • Hassan, S. M., Rao, A. N., Bastawisi, A. O., and Aidy, I. R. 1994. Weed management in broadcast seeded rice in Egypt, pp 1–13, in Proceedings International Workshop on Constraints, Opportunities, and Innovations for Wet-seeded Rice. Bangkok, Thailand.

  • Hassan, S. M., Aidy, I. R., Bastawisi, A. O., and Draz, A. E. 1998. Weed management using allelopathic rice varieties in Egypt, pp. 27–38, in M. Olofsdotter (ed.), Allelopathy in Rice. IRRI Publishing, Los Banos, the Philippines.

    Google Scholar 

  • Hayashi, H., Czaja, I., Lubenow, H., Schell, J., and Walden, R. 1992. Activation of a plant gene by T-DNA tagging: auxin-independent growth in vitro. Science 258:1350–1353.

    Google Scholar 

  • He, H. B., Wang, H. B., Fang, C. X., Lin, Z. H., Yu, Z. M., and Lin, W. X. 2012. Separation of allelopathy from resource competition using rice/barnyardgrass mixed-cultures. PLoS One 7:e37201. doi:10.1371/journal.pone.0037201.

    Article  PubMed  CAS  Google Scholar 

  • Heap, I. 2012. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed: September 13, 2012.

  • Hoad, S. P., Bertholdsson, N. O., Neuhoff, D., and Kopke, U. 2012. Approaches to breed for improved weed suppression in organically grown cereals, pp. 61–76, in E. T. Lammberts van Buren and J. R. Myers (eds.), Organic Crop Breeding. Wiley-Blackwell, Oxford, UK.

    Google Scholar 

  • Huang, J. H., Fu, R., Liang, C. X., Dong, D. F., and Luo, X. L. 2010. Allelopathic effects of cassava (Manihot esculenta Crantz) on radish (Raphanus sativus L.) and ryegrass (Lolium perenne L.). Allelopathy J. 25:155–162.

    Google Scholar 

  • Huel, D. G. and Hucl, P. 1996. Genotypic variation for competitive ability in spring wheat. Plant Breed. 115:325–329.

    Article  Google Scholar 

  • Inderjit and Delmoral, R. 1997. Is separating resource competition from allelopathy realistic? Bot. Rev. 63:221–230.

    Article  Google Scholar 

  • Inderjit and Olofsdotter, M. 1998. Using and improving laboratory bioassays in rice allelopathy research, pp. 7–26, in M. Olofsdotter (ed.), Allelopathy in Rice. IRRI Publishing, Los Banos, the Philippines.

    Google Scholar 

  • Jannink, J. L., Orf, J. H., Jordan, N. R., and Shaw, R. G. 2000. Index selection for weed suppressive ability in soybean. Crop. Sci. 40:1087–1094.

    Article  Google Scholar 

  • Jensen, L. B., Cortois, B., Shen, L. S., Li, Z. K., Olofsdotter, M., and Mauleon, R. P. 2001. Locating genes controlling allelopathic effects against barnyard grass in upland rice. Agron. J. 93:21–26.

    Article  CAS  Google Scholar 

  • Jensen, L. B., Courtois, B., and Olofsdotter, M. 2008. Quantitative trait loci analysis of allelopathy in rice. Crop. Sci. 48:1459–1469.

    Article  Google Scholar 

  • Johnson, D. E., Dingkuhn, M., Jones, M. P., and Mahamane, M. C. 1998. The influence of rice plant type on the effect of weed competition on Oryza sativa and Oryza glaberrima. Weed Res. 38:207–216.

    Article  Google Scholar 

  • Jones, M. P., Dingkuhn, M., Aluko, G. K., and Semon, M. 1997. Interspecific Oryza sativa L. x O. glaberrima Steud. progenies in upland rice improvement. Euphytica 94:237–246.

    Article  Google Scholar 

  • Jordan, N. 1993. Prospects for weed-control through crop interference. Ecol. Appl. 3:84–91.

    Article  Google Scholar 

  • Kato-Noguchi, H., and Peters, R. J. 2013. The role of momilactones in rice allelopathy. J. Chem. Ecol. 39:175–185.

    Google Scholar 

  • Kim, K. U. and Shin, D. H. 1998. Rice allelopathy research in Korea, pp. 39–44, in M. Olofsdotter (ed.), Allelopathy in Rice. IRRI Publishing, Los Banos, the Philippines.

    Google Scholar 

  • Kim, S. Y., Madrid, A. V., Park, S. T., Yang, S. J., and Olofsdotter, M. 2005. Evaluation of rice allelopathy in hydroponics. Weed Res. 45:74–79.

    Article  Google Scholar 

  • Knezevic, S. 2011. Weed control with flaming and cultivation in corn. Phytopathology 101:S92.

    Article  Google Scholar 

  • Kong, C. H., Chen, X. H., Hu, F., and Zhang, S. Z. 2011. Breeding of commercially acceptable allelopathic rice cultivars in China. Pest Manag. Sci. 67:1100–1106.

    CAS  Google Scholar 

  • Korres, N. E. and Froud-Williams, R. J. 2002. Effects of winter wheat cultivars and seed rate on the biological characteristics of naturally occurring weed flora. Weed Res. 42:417–428.

    Article  Google Scholar 

  • Kruidhof, H. M., Bastiaans, L., and Kropff, M. J. 2009. Cover crop residue management for optimizing weed control. Plant Soil 318:169–184.

    Article  CAS  Google Scholar 

  • Krysan, P. J., Young, J. C., and Sussman, M. R. 1999. T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:2283–2290.

    Google Scholar 

  • Lee, H. W., Ghimire, S. R., Shin, D. H., Lee, I. J., and Kim, K. U. 2008. Allelopathic effect of the root exudates of K21, a potent allelopathic rice. Weed Biol. Manag. 8:85–90.

    Article  CAS  Google Scholar 

  • Lemerle, D., Verbeek, B., and Coombes, N. 1995. Losses in grain yield of winter crops from Lolium rigidum competition depend on crop species, cultivar and season. Weed Res. 35:503–509.

    Article  Google Scholar 

  • Lemerle, D., Verbeek, B., Cousens, R. D., and Coombes, N. E. 1996. The potential for selecting wheat varieties strongly competitive against weeds. Weed Res. 36:505–513.

    Article  Google Scholar 

  • Lemerle, D., Verbeek, B., and Orchard, B. 2001a. Ranking the ability of wheat varieties to compete with Lolium rigidum. Weed Res. 41:197–209.

    Article  Google Scholar 

  • Lemerle, D., Gill, G. S., Murphy, C. E., Walker, S. R., Cousens, R. D., Mokhtari, S., Peltzer, S. J., Coleman, R., and Luckett, D. J. 2001b. Genetic improvement and agronomy for enhanced wheat competitiveness with weeds. Aust. J. Agric. Res. 52:527–548.

    Article  Google Scholar 

  • Lemerle, D., Lockley, P., Luckett, D., and Wu, H. 2010. Canola competition for weed suppression, pp. 60–62, in S. M. Zydenbos (ed.), Proceedings Seventeenth Australasian Weeds Conference. New Zealand Plant Protection Society, Christchurch, New Zealand.

    Google Scholar 

  • Ma, H. J., Shin, D. H., Lee, I. J., Koh, J. C., Park, S. K., and Kim, K. U. 2006. Allelopathic potential of K21, selected as a promising allelopathic rice. Weed Biol. Manag. 6:189–196.

    Article  CAS  Google Scholar 

  • Mason, H. E., Navabi, A., Frick, B. L., O'Donovan, J. T., and Spaner, D. M. 2007. The weed-competitive ability of Canada western red spring wheat cultivars grown under organic management. Crop. Sci. 47:1167–1176.

    Article  Google Scholar 

  • Mason, H., Goonewardene, L., and Spaner, D. 2008. Competitive traits and the stability of wheat cultivars in differing natural weed environments on the northern Canadian Prairies. J. Agric. Sci. 146:21–33.

    Article  Google Scholar 

  • Mokhtari, S., Galwey, N. W., Cousens, R. D., and Thurling, N. 2002. The genetic basis of variation among wheat F3 lines in tolerance to competition by ryegrass (Lolium rigidum). Euphytica 124:355–364.

    Article  CAS  Google Scholar 

  • Moldenhauer, K. A. K., Gibbons, J. W., Lee, F. N., Norman, R. J., Bernhardt, J., Dilday, R. H., Rutger, J. N., Blocker, M. M., and Tolbert, A. C. 1999. Breeding and evaluation for improved rice varieties in the Arkansas rice breeding and development program, pp 20–27, in R. J. Norman and T. H. Johnson (eds.), Bobby R. Wells Rice Research Studies 1998. Arkansas Agricultural Experiment Station, Series 468. Fayetteville, AR.

  • Muller, C. H. 1969. Allelopathy as a factor in ecological process. Vegetatio 18:348–357.

    Article  Google Scholar 

  • Murphy, K. M., Dawson, J. C., and Jones, S. S. 2008. Relationship among phenotypic growth traits, yield and weed suppression in spring wheat landraces and modern cultivars. Field Crop Res. 105:107–115.

    Article  Google Scholar 

  • Navarez, D. C. and Olofsdotter, M. 1996. Relay seeding technique for screening allelopathic rice (Oryza sativa), pp 1285–1290, in H. Brown, G. W. Cussans, M. D. Devine, S. O. Duke, C. Fernandez-Quintanilla, A. Helweg, R. E. Labarada, M. Landesm, O. Kudsk and J. C. Streibig (eds.), Proceedings of the Second International Weed Control Congress. Copenhagen, Denmark.

  • Niemeyer, H. M. and Jerez, J. M. 1997. Chromosomal location of genes for hydroxamic acid accumulation in Triticum aestivum L (wheat) using wheat aneuploids and wheat substitution lines. Heredity 79:10–14.

    Article  CAS  Google Scholar 

  • Nord, E. A., Curran, W. S., Mortensen, D. A., Mirsky, S. B., and Jones, B. P. 2011. Integrating multiple tactics for managing weeds in high residue no-till soybean. Agron. J. 103:1542–1551.

    Article  Google Scholar 

  • O'Donovan, J. T., Harker, K. N., Clayton, G. W., and Hall, L. M. 2000. Wild oat (Avena fatua) interference in barley (Hordeum vulgare) is influenced by barley variety and seeding rate. Weed Technol. 14:624–629.

    Article  Google Scholar 

  • Olofsdotter, M. 1998. Allelopathy in rice, pp. 1–6, in M. Olofsdotter (ed.), Allelopathy in Rice. IRRI Publishing, Los Banos, The Philippines.

    Google Scholar 

  • Olofsdotter, M. and Navarez, D. 1996. Allelopathic rice for Echinochloa crus-galli control, pp. 1175–1181, in Proceedings of the 2nd International Weed Control Conference, Danish Department of Weed Control and Pesticide Ecology, Copenhagen, Denmark.

  • Olofsdotter, M., Navarez, D., Rebulanan, M., and Streibig, J. C. 1999. Weed-suppressing rice cultivars–does allelopathy play a role? Weed Res. 39:441–454.

    Article  Google Scholar 

  • Olofsdotter, M., Jensen, L. B., and Courtois, B. 2002. Improving crop competitive ability using allelopathy–an example from rice. Plant Breed. 121:1–9.

    Article  Google Scholar 

  • Paterson, A. H., Lander, E. S., Hewitt, J. D., Peterson, S., Lincoln, S. E., and Tanksley, S. D. 1988. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726.

    Article  PubMed  CAS  Google Scholar 

  • Paynter, B. H. and Hills, A. L. 2009. Barley and rigid ryegrass (Lolium rigidum) competition is influenced by crop cultivar and density. Weed Technol. 23:40–48.

    Article  Google Scholar 

  • Perez, F. J. and Ormenonunez, J. 1993. Weed growth interference from temperate cereals—the effect of a hydroxamic acid exuding rye (Secale cereale L.) cultivar. Weed Res. 33:115–119.

    Article  CAS  Google Scholar 

  • Pheng, S., Olofsdotter, M., Jahn, G., and Adkins, S. W. 2009a. Potential allelopathic rice lines for weed management in Cambodian rice production. Weed Biol. Manag. 9:259–266.

    Article  Google Scholar 

  • Pheng, S., Olofsdotter, M., Jahn, G., Nesbitt, H., and Adkins, S. W. 2009b. Allelopathic potential of Cambodian rice lines under field conditions. Weed Biol. Manag. 9:267–275.

    Article  Google Scholar 

  • Pickett, J. A. 2012. Chemical ecology and sustainable food production. J. Chem. Ecol. 38:1071.

    Article  PubMed  CAS  Google Scholar 

  • Place, G. T., Reberg-Horton, S. C., Dickey, D. A., and Carter, T. E. 2011. Identifying soybean traits of interest for weed competition. Crop. Sci. 51:2642–2654.

    Article  Google Scholar 

  • Putnam, A. R. and Duke, W. B. 1974. Biological suppression of weeds–evidence for allelopathy in accessions of cucumber. Science 185:370–372.

    Article  PubMed  CAS  Google Scholar 

  • Reberg-Horton, S. C., Burton, J. D., Danehower, D. A., Ma, G. Y., Monks, D. W., Murphy, J. P., Ranells, N. N., Williamson, J. D., and Creamer, N. J. 2005. Changes over time in the allelochemical content of ten cultivars of rye (Secale cereale L.). J. Chem. Ecol. 31:179–193.

    Article  PubMed  CAS  Google Scholar 

  • Reberg-Horton, S. C., Grossman, J. M., Kornecki, T. S., Meijer, A. D., Price, A. J., Place, G. T., and Webster, T. M. 2012. Utilizing cover crop mulches to reduce tillage in organic systems in the southeastern USA. Renew. Agr. Food Syst. 27:41–48.

    Article  Google Scholar 

  • Rebetzke, G. J. and Richards, R. A. 1999. Genetic improvement of early vigour in wheat. Aust. J. Agric. Res. 50:291–301.

    Article  Google Scholar 

  • Rice, E. 1984. Allelopathy. Academic, London.

    Google Scholar 

  • Satorre, E. H. and Snaydon, R. W. 1992. A comparison of root and shoot competition between spring cereals and Avena fatua L. Weed Res. 32:45–55.

    Article  Google Scholar 

  • Seal, A. N. and Pratley, J. E. 2010. The specificity of allelopathy in rice (Oryza sativa). Weed Res. 50:303–311.

    Google Scholar 

  • Seal, A. N., Pratley, J. E., and Haig, T. 2008. Can results from a laboratory bioassay be used as an indicator of field performance of rice cultivars with allelopathic potential against Damasonium minus (starfruit). Aust. J. Agric. Res. 59:183–188.

    Article  Google Scholar 

  • Seavers, G. P. and Wright, K. J. 1999. Crop canopy development and structure influence weed suppression. Weed Res. 39:319–328.

    Article  Google Scholar 

  • Second, G. 1985. Evolutionary relationships in the sativa group of Oryza based on isozyme data. Genet. Sel. Evol. 17:89–114.

    Article  PubMed  CAS  Google Scholar 

  • Shimura, K., Okada, A., Okada, K., Jikumaru, Y., Ko, K. W., Toyomasu, T., Sassa, T., Hasegawa, M., Kodama, O., Shibuya, N., Koga, J., Nojiri, H., and Yamane, H. 2007. Identification of a biosynthetic gene cluster in rice for momilactones. J. Biol. Chem. 282:34013–34018.

    Google Scholar 

  • Shulz, M., Marocco, A., Tabaglio, V., and Macias, F. A. 2013. Benzoxazinoids in rye allelopathy–from discovery to application in sustainable weed control and organic farming. J. Chem. Ecol. 39:154–174.

    Google Scholar 

  • Silva, P. S. L., Silva, K. M. B., Silva, P. I. B., Oliveira, V. R., and Ferreira, J. L. B. 2010. Green ear yield and grain yield of maize cultivars in competition with weeds. Planta Daninha 28:77–85.

    Article  Google Scholar 

  • So, Y. F., Williams, M. M., Pataky, J. K., and Davis, A. S. 2009. Principal canopy factors of sweet corn and relationships to competitive ability with wild-proso millet (Panicum miliaceum). Weed Sci. 57:296–303.

    Article  CAS  Google Scholar 

  • Toure, A., Rodenburg, J., Saito, K., Oikeh, S., Futakuchi, K., Gumedzoe, D., and Huat, J. 2011. Cultivar and weeding effects on weeds and rice yields in a degraded upland environment of the coastal savanna. Weed Technol. 25:322–329.

    Article  Google Scholar 

  • van der Weide, R. Y., Bleeker, P. O., Achten, V., Lotz, L. A. P., Fogelberg, F., and Melander, B. 2008. Innovation in mechanical weed control in crop rows. Weed Res. 48:215–224.

    Article  Google Scholar 

  • Vandeleur, R. K. and Gill, G. S. 2004. The impact of plant breeding on the grain yield and competitive ability of wheat in Australia. Aust. J. Agric. Res. 55:855–861.

    Article  Google Scholar 

  • Verschwele, A. and Niemann, P. 1993. Indirect weed-control by selection of wheat cultivars, pp. 799–806, in T. Eggers (ed.), Proceedings of the 8th European Weed Research Society Symposium. European Weed Research Society, Braunschweig, Germany.

    Google Scholar 

  • Watson, P. R., Derksen, D. A., and van Acker, R. C. 2006. The ability of 29 barley cultivars to compete and withstand competition. Weed Sci. 54:783–792.

    Article  CAS  Google Scholar 

  • Weston, L., Alsaadawi, I. S., and Baerson, S. C. 2013. Sorghum allelopathy–from ecosystem to molecule. J. Chem. Ecol. 39:142–153.

    Google Scholar 

  • Wicks, G. A., Ramsel, R. E., Nordquist, P. T., Schmidt, J. W., and Challaiah 1986. Impact of wheat cultivars on establishment and suppression of summer annual weeds. Agron. J. 78:59–62.

    Article  Google Scholar 

  • Wicks, G. A., Nordquist, P. T., Baenziger, P. S., Klein, R. N., Hammons, R. H., and Watkins, J. E. 2004. Winter wheat cultivar characteristics affect annual weed suppression. Weed Technol. 18:988–998.

    Article  Google Scholar 

  • Wilson, R. 1988. Biology of weed seeds in the soil, pp. 25–39, in M. Altieri and M. Liebman (eds.), Weed Management in Agroecosystems: Ecological Approaches. CRC, Boca Raton, FL.

    Google Scholar 

  • Wilson, R. E. and Rice, E. L. 1968. Allelopathy as expressed by Helianthus annuus and its role in old-field succession. Bull. Torrey Bot. Club 95:432–448.

    Article  CAS  Google Scholar 

  • Wolfe, M. S., Baresel, J. P., Desclaux, D., Goldringer, I., Hoad, S., Kovacs, G., Loschenberger, F., Miedaner, T., Ostergard, H., and Lammerts van Bueren, E. T. 2008. Developments in breeding cereals for organic agriculture. Euphytica 163:323–346.

    Article  Google Scholar 

  • Worland, A. J. 1996. The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89:49–57.

    Article  Google Scholar 

  • Wu, H., Pratley, J., Lemerle, D., and Haig, T. 1999. Crop cultivars with allelopathic capability. Weed Res. 39:171–180.

    Article  Google Scholar 

  • Wu, H., Pratley, J., Lemerle, D., and Haig, T. 2000a. Evaluation of seedling allelopathy in 453 wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum) by the equal-compartment-agar method. Aust. J. Agric. Res. 51:937–944.

    Article  Google Scholar 

  • Wu, H., Pratley, J., Lemerle, D., and Haig, T. 2000b. Laboratory screening for allelopathic potential of wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum). Aust. J. Agric. Res. 51:259–266.

    Article  Google Scholar 

  • Wu, H., Pratley, J., Lemerle, D., Haig, T., and An, M. 2001. Screening methods for the evaluation of crop allelopathic potential. Bot. Rev. 67:403–415.

    Article  Google Scholar 

  • Wu, H., Pratley, J., Ma, W., and Haig, T. 2003. Quantitative trait loci and molecular markers associated with wheat allelopathy. Theor. Appl. Genet. 107:1477–1481.

    Article  PubMed  CAS  Google Scholar 

  • Wu, H. W., Walker, S. R., Osten, V. A., and Robinson, G. 2010. Competition of sorghum cultivars and densities with Japanese millet (Echinochloa esculenta). Weed Biol. Manag. 10:185–193.

    Article  Google Scholar 

  • Xu, M. M., Galhano, R., Wiemann, P., Bueno, E., Tiernan, M., Wu, W., Chung, I. M., Gershenzon, J., Tudzynski, B., Sesma, A., and Peters, R. J. 2012. Genetic evidence for natural product-mediated plant-plant allelopathy in rice (Oryza sativa). New Phytol. 193:570–575.

    Google Scholar 

  • Yan, W. G. and McClung, A. M. 2010. ‘Rondo’ a long-grain indica rice with resistances to multiple diseases. J. Plant Reg. 4:131–136.

    Article  Google Scholar 

  • Yang, L. T., Mickelson, S., See, D., Blake, T. K., and Fischer, A. M. 2004. Genetic analysis of the function of major leaf proteases in barley (Hordeum vulgare L.) nitrogen remobilization. J. Exp. Bot. 55:2607–2616.

    Google Scholar 

  • Zhang, Z. H., Yu, S. B., Yu, T., Huang, Z., and Zhu, Y. G. 2005. Mapping quantitative trait loci (QTLs) for seedling-vigor using recombinant inbred lines of rice (Oryza sativa L.). Field Crop Res. 91:161–170.

    Article  Google Scholar 

  • Zhao, D. L., Atlin, G. N., Bastiaans, L., and Spiertz, J. H. J. 2006a. Cultivar weed-competitiveness in aerobic rice: Heritability, correlated traits, and the potential for indirect selection in weed-free environments. Crop. Sci. 46:372–380.

    Article  Google Scholar 

  • Zhao, D. L., Atlin, G. N., Bastiaans, L., and Spiertz, J. H. J. 2006b. Developing selection protocols for weed competitiveness in aerobic rice. Field Crop Res. 97:272–285.

    Article  Google Scholar 

  • Zhou, Y. J., Cao, C. D., Zhuang, J. Y., Zheng, K. L., Guo, Y. Q., Ye, M., and Yu, L. Q. 2007. Mapping QTL associated with rice allelopathy using the rice recombinant inbred lines and specific secondary metabolite marking method. Allelopathy J. 19:479–485.

    Google Scholar 

  • Zhu, C., Gore, M., Bucler, E., and Yu, J. 2008. Status and prospects of association mapping in plants. Plant Genome 1:5–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Nils-Ove Bertholdsson, David Gealy, Deidre Lemerle, and Leslie Weston for guidance and up to date information. Jeanette Lyerly, Paul Murphy, and Tom Stalker all provided useful suggestions and assistance with editing. The authors were supported by the USDA Organic Research and Extension Initiative Award # 2009-51300-05527.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Reberg-Horton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Worthington, M., Reberg-Horton, C. Breeding Cereal Crops for Enhanced Weed Suppression: Optimizing Allelopathy and Competitive Ability. J Chem Ecol 39, 213–231 (2013). https://doi.org/10.1007/s10886-013-0247-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0247-6

Keywords

Navigation