Skip to main content

Advertisement

Log in

Sorghum Allelopathy—From Ecosystem to Molecule

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Sorghum allelopathy has been reported in a series of field experiments following sorghum establishment. In recent years, sorghum phytotoxicity and allelopathic interference also have been well-described in greenhouse and laboratory settings. Observations of allelopathy have occurred in diverse locations and with various sorghum plant parts. Phytotoxicity has been reported when sorghum was incorporated into the soil as a green manure, when residues remained on the soil surface in reduced tillage settings, or when sorghum was cultivated as a crop in managed fields. Allelochemicals present in sorghum tissues have varied with plant part, age, and cultivar evaluated. A diverse group of sorghum allelochemicals, including numerous phenolics, a cyanogenic glycoside (dhurrin), and a hydrophobic p-benzoquinone (sorgoleone) have been isolated and identified in recent years from sorghum shoots, roots, and root exudates, as our capacity to analyze and identify complex secondary products in trace quantities in the plant and in the soil rhizosphere has improved. These allelochemicals, particularly sorgoleone, have been widely investigated in terms of their mode(s) of action, specific activity and selectivity, release into the rhizosphere, and uptake and translocation into sensitive indicator species. Both genetics and environment have been shown to influence sorgoleone production and expression of genes involved in sorgoleone biosynthesis. In the soil rhizosphere, sorgoleone is released continuously by living root hairs where it accumulates in significant concentrations around its roots. Further experimentation designed to study the regulation of sorgoleone production by living sorghum root hairs may result in increased capacity to utilize sorghum cover crops more effectively for suppression of germinating weed seedlings, in a manner similar to that of soil-applied preemergent herbicides like trifluralin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad, S. A., Cheema, Z. A., and Ahmad, R. 2000. Evaluation of sorgaab as natural weed inhibitor in maize. J. Plant Anim. Sci. 10:141–146.

    Google Scholar 

  • Al-Bedairy, N. R., Alsaadawi, I. S., and Shati, R. K. 2011. Effect of combination of Sorghum bicolor L. (Moench) residues and Trifluralin herbicide on broad bean and its weeds. Iraqi J. Agric. 94–102.

  • Al-Bedairy, N. R., Alsaadawi, I. S., and Shati, R. K. 2012. Combining effect of allelopathic Sorghum bicolor L. (Moench) cultivars with planting densities on companion weeds. Arch. Agron. Soil Sci. In press.

  • Alsaadawi, I. S., Al-Ekeelie, M. H. S., and Al-Hamzawi, M. K. 2007. Differential allelopathic potential of grain sorghum genotypes to weeds. Allelopathy J. 19:153–160.

    Google Scholar 

  • Alsaadawi, I. S., Al-Uqaili, J., Al-Rubeaa, A. J., and Al-Hadithy, S. M. 1986. Allelopathic suppression of weeds and nitrification by Sorghum bicolour L. (Moensch). J. Chem. Ecol. 12:209–219.

    Article  Google Scholar 

  • Alsaadawi, I. S. and Dayan, F. E. 2009. Potential and prospect of sorghum allelopathy in agroecosystem. Allelopathy J. 24:255–270.

    Google Scholar 

  • Altieri, M. A., Letourneau, D. K., and Davis, J. R. 1983. Developing sustainable agroecosystems. Bioscience 33:45–49.

    Article  Google Scholar 

  • Austin, M. B. and Noel, J. P. 2003. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20:79–110.

    Article  PubMed  CAS  Google Scholar 

  • Baerson, S. R., Dayan, F. E., Rimando, A. M., Nanayakkara, N. P. D., Schroder, J., Fishbein, M., Pan, Z., Kagan, I. A., Pratt, L. H., Cordonnier-Pratt, M. M., and Duke, S. O. 2008. A functional genomics investigation of allelochemical biosynthesis in Sorghum bicolor root hairs. J. Biol. Chem. 283:3231–3247.

    Article  PubMed  CAS  Google Scholar 

  • Baerson, S. R., Pan, Z., Rimando, A. M., Dayan, F. E., and Cook, D. 2011. Two novel alkylresorcinol synthase genes from sorghum; cloning, expression, transformation and characterization, patent No. WO 2011/112380 A2., U.S.A.

  • Baerson, S. R., Schroder, J., Cook, D., Rimando, A. M., Pan, Z., Dayan, F. E., Noonan, B. P., and Duke, S. O. 2010. Alkylresorcinol biosynthesis in plants: new insights from an ancient enzyme family? Plant Signal. Behav. 5:1286–1289.

    Article  PubMed  CAS  Google Scholar 

  • Bahatti, M. O. L., Cheema, Z. A., and Mahmood, T. 2000. Efficacy of sorgaab as natural weed inhibitor in raya. Pak. J. Biol. Sci. 3:1128–1130.

    Article  Google Scholar 

  • Batish, D. R., Singh, H. P., Kohli, R. K., and Dawra, G. P. 2006. Potential of allelopathy and allelochemicals for weed management, pp. 209–256, in H. P. Singh et al. (eds.), Handbook of Sustainable Weed Management. Food Products Press, Binghamton.

    Google Scholar 

  • Ben-Hammouda, M., Robert, J. K., and Harry, C. M. 1995. Phytotoxicity of extracts from sorghum plant components on wheat seedlings. Crop. Sci. 35:1652–1656.

    Article  CAS  Google Scholar 

  • Bhowmik, P. C. and Doll, J. D. 1982. Corn and soybean response to allelopathic effects of weed and crop residues. Agron. J. 74:601–606.

    Article  Google Scholar 

  • Burgos-Leon, W. F., Gaury, R., and Nicou, T. L. 1980. Etudes et travaux en cas de fatigue des sols induite par laculture du sorgho. Agron. Trop. 35:319–334.

    CAS  Google Scholar 

  • Chang, M., Netzly, D. H., Butler, L. G., and Lynn, D. G. 1996. Chemical regulation of distance: characterization of the first natural host germination stimulant for Striga asiatica. J. Am. Chem. Soc. 106:7858–7860.

    Google Scholar 

  • Cheema, Z. A., Asim, M., and Khaliq, A. 2000. Sorghum allelopathy for weed control in cotton (Gossypium arboreum L.). Int. J. Agric. Biol. 37–41.

  • Cheema, Z. A., Farid, M.S., and Khaliq, A. 2003a. .Efficacy of concentrated sorgaab in combination with low rates of atrazine for weed control in maize. J. Anim. Plant. Sci. 13:48–51.

  • Cheema, Z. A., Hussain, S., and Khaliq, A. 2003b. Efficacy of sorgaab in combination with allelopathic water extracts and reduced rates of pendimethalin for weed control in mungbean. Ind. J. Plant. Sci. 2:21–25.

    Google Scholar 

  • Cheema, Z. A., Jaffar, I., and Khaliq, A. 2003c. Reducing isoprotron dose in combination with sorgaab for weed control in wheat. Pak. J. Weed Sci. Res. 9:153–160.

    Google Scholar 

  • Cheema, Z. A. and Khaliq, A. 2000. Use of sorghum allelopathic properties to control weeds in irrigated wheat and semiarid region of Punjab. Agric. Ecosyst. Environ. 79:105–112.

    Article  Google Scholar 

  • Cheema, Z. A., Khaliq, A., and Ali, K. 2002. Efficacy of sorgaab for weed control in wheat grown at different fertility levels. Pak. J. Weed. Sci. Res. 8:33–38.

    Google Scholar 

  • Cheema, Z. A., Khaliq, A., and Farooq, R. 2003d. Effect of concentrated sorgaab alone and in combination with herbicides and surfactant in wheat. J. Anim. Plant Sci. 13:10–13.

    Google Scholar 

  • Cheema, Z. A., Khaliq, A., and Saleem, A. 2001. Use of Sorgaab (sorghum water extract) as a natural weed inhibitor in spring mungbean. J. Agric. Biol. 3:515–518.

    Google Scholar 

  • Cheema, Z. A., Luqman, M., and Khaliq, A. 1997. Use of allelopathic extracts of sorghum and sunflower herbage for weed control in wheat. J. Anim. Plant. Sci. 7:91-93.

    Google Scholar 

  • Chung, I. M. and Miller, D. A. 1995. Effect of alfalfa plant and soil extracts on germination and growth of alfalfa. Agron. J. 87:762–767.

    Article  Google Scholar 

  • Cook, D., Rimando, A. M., Clemente, T. E., Schroder, J., Dayan, F. E., Nanayakkara, N. P. D., Pan, Z., Noonan, B. P., Fishbein, M., Duke, S. O., and Baerson, S. R. 2010. Alkylresorcinol synthases expressed in Sorghum bicolor root hairs play an essential role in the biosynthesis of the allelopathic benzoquinone sorgoleone. Plant Cell 22:867–887.

    Article  PubMed  CAS  Google Scholar 

  • Czarnota, M. A., Paul, R. N., Dayan, F. E., Nimbal, C. I., and Weston, L. A. 2001. Mode of action, localization of production, chemical nature and activity of sorgoleoneL a potent PSII inhibitor in Sorghum spp. root exudates. Weed Technol 15:813–825.

    Article  CAS  Google Scholar 

  • Czarnota, M. A., Paul, R. N., Weston, L. A., and Duke, S. O. 2003a. Anatomy of sorgoleone-secreting root hairs of Sorghum species. Int. J.Plant Sci. 164:861–866.

    Article  Google Scholar 

  • Czarnota, M. A., Rimando, A. M., and Weston, L. A. 2003b. Evaluation of root exudates of seven sorghum accessions. J. Chem. Ecol. 29:2073–2083.

    Article  PubMed  CAS  Google Scholar 

  • Dayan, F. E. 2006. Factors modulating the levels of the allelochemical sorgoleone in Sorghum bicolor. Planta 224:339–346.

    Article  PubMed  CAS  Google Scholar 

  • Dayan, F. E., Howell, J. L., and Weidenhamer, J. D. 2009. Dynamic root exudation of sorgoleone and its in planta mechanism of action. J. Exp. Bot. 60:2107–2117.

    Article  PubMed  CAS  Google Scholar 

  • Dover, K., Wang, K. H., and Mcsorley, R. 2012. Nematode management using sorghum and its relatives. University of Florida IFAS Extension Bulletin ENY 716. pp. 1–5.

  • Dusad, L. R. and Morey, D. K. 1979. Effect of intercropping sorghum with legumes on the yields, economics and nitrogen economy. J. Maharashtra Agric. Univ. 4:314–317.

    Google Scholar 

  • Einhellig, F. A. and Rasmussen, J. A. 1989. Prior cropping with grain sorghum inhibits weeds. J. Chem. Ecol. 15:951–960.

    Article  Google Scholar 

  • Einhellig, F. A., Rasmussen, J. A., Hejl, A. M., and Souza, I. F. 1993. Effects of root exudate sorgoleone on photosynthesis. J. Chem. Ecol. 19:369–375.

    Article  CAS  Google Scholar 

  • Einhellig, F. A. and Souza, I. F. 1992. Phytotoxicity of sorgoleone found in grain sorghum root exudates. J. Chem. Ecol. 18:1–11.

    Article  CAS  Google Scholar 

  • Fate, G. D. and Lynn, D. G. 1996. Xenognosin methylation is critical in defining the chemical potential gradient that regulates the spatial distribution in Striga pathogenesis. J. Am. Chem. Soc. 118(46):11369–11376.

    Google Scholar 

  • Forney, D. R., Foy, C. L., and Wolf, D. D. 1985. Weed suppression in no-till alfalfa (Medicago sativa) by prior cropping of summer annual forage grasses. Weed Sci. 33:490–497.

    Google Scholar 

  • Funa, N., Ozawa, H., Hirata, A., and Horinouchi, S. 2006. Phenolic lipid synthesis by type III polyketide synthases is essential for cyst formation in Azotobacter vinelandii. Proc. Natl. Acad. Sci. U. S. A. 103:6356–6361.

    Article  PubMed  CAS  Google Scholar 

  • Funabashi, M., Funa, N., and Horinouchi, S. 2008. Phenolic lipids synthesized by type III polyketide synthase confer penicillin resistance on Streptomyces griseus. J. Biol. Chem. 283:13983–13991.

    Article  PubMed  CAS  Google Scholar 

  • Geneve, R. L. and Weston, L. A. 1988. Growth reduction of eastern redbud (Cercis canadensis L.) seedlings caused by interaction with sorghum-Sudan grass hybrid (sudex). J. Environ. Hortic. 24–26.

  • Gonzalez, V. M., Kazimir, J., Nimbal, C. I., Weston, L. A., and Cheniae, G. M. 1997. Inhibition of a photosystem II electron transfer reaction by the natural product sorgoleone. J. Agric. Food Chem. 45:1415–1421.

    Article  CAS  Google Scholar 

  • Goyal, A., Saxena, P., Rahman, A., Singh, P. H., Kasbekar, D. P., Gokhale, R. S., and Sankaranarayanan, R. 2008. Structural insights into biosynthesis of resorcinolic lipids by a type III polyketide synthase in Neurospora crassa. J. Struct. Biol. 162:411–421.

    Article  PubMed  CAS  Google Scholar 

  • Guenzi, W. D., McCalla, T. M., and Norstadt, F. A. 1967. Persistence of phytotoxic substances in wheat, oat, corn, and sorghum. Agron. J. 59:163–165.

    Article  CAS  Google Scholar 

  • Hejl, A. M. and Koster, K. L. 2004. The allelochemical sorgoleone inhibits root H + ATPase and water uptake. J. Chem. Ecol. 30:2181–2191.

    Article  CAS  Google Scholar 

  • Iqbal, J., Cheema, Z. A., and Mushtaq, N. 2009. Allelopathic crop water extracts reduce the herbicide dose for weed control in cotton (Gossypium hirsutum). Int. J. Agric. Biol. 11.

  • Kagan, I. A., Rimando, A. M., and Dayan, F. E. 2003. Chromatographic separation and in vitro activity of sorgoleone congeners from the roots of Sorghum bicolor. J. Agric. Food Chem. 51:7589–7595.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. Y., de Datta, R. P., Robles, K. U., Kim, S. C., Lee, S. C., and Shin, D. H. 1993. Allelopathic effects of sorghum extract and residues on selected crops and weeds. Korean J. Weed Sci. 14:34–41.

    CAS  Google Scholar 

  • Kohli, R. K., Singh, H. P., and Batish, D. R. 2001. An overview, pp. 1–42, in R. K. Kohli et al. (eds.), Allelopathy in Agroecosystems. Hawthorne Press Inc., New York.

    Google Scholar 

  • Kondap, S., Rao, A. R., and Reddy, G. V. 1990. Studies on the effect of planting patterns and weeding intervals in sorghum based intercropping system on weed infestation and yield. Madras Agric. J. 77:64–69.

    Google Scholar 

  • Kozubek, A. and Tyman, J. H. 2005. Bioactive phenolic lipids, pp. 119–190, in A. Rahman (ed.), Studies in Natural Products Chemistry. Elsevier B.V, Amsterdam.

    Google Scholar 

  • Loi, R., Solar, M., and Weidenhamer, J. D. 2007. Solid phase microextraction method for in vivo measurement of allelochemical uptake. J. Chem. Ecol. 34:70–75.

    Article  PubMed  Google Scholar 

  • Mahmood, A., Cheema, Z. A., Mushtaq, M. N., and Farooq, M. 2012. Maize sorghum intercropping systems for control of purple nutsedge management. Arch. Agron. Soil Sci.. doi:10.1080/03650340.2012.704547.

  • Matsuzawa, M., Katsuyama, Y., Funa, N., and Horinouchi, S. 2010. Alkylresorcylic acid synthesis by type III polyketide synthases from rice Oryza sativa. Phytochemistry 71:1059–1067.

    Article  PubMed  CAS  Google Scholar 

  • Meazza, G., Scheffler, B. E., Tellez, M. R., Rimando, A. M., Nanayakkara, N. P. D., Khan, I. A., Abourashed, E. A., Romangni, J. G., Duke, S. O., and Dayan, F. E. 2002. The inhibitory activity of natural products on plant p-hydroxyphneylpyruvate dioxygenase. Phytochemistry 59:281–288.

    Article  Google Scholar 

  • Moody K. 1978. Weed Control in Intercropping in Tropical Asia, Weeds and Their Control in the Humid and Sub Humid Tropics. Ibadan, Nigeria. pp. 1–105.

  • Netzly, D. H. and Butler, L. G. 1986. Roots of sorghum exude hydrophobic droplets containing biologically active components. Phytochemistry 59:775–778.

    Google Scholar 

  • Nimbal, C. I., Weston, L. A., Pedersen, J., and Yerkes, C. 1996. Phytotoxicity and distribution of sorgoleone in grain sorghum germplasm. J. Agric. Food Chem. 44:1343–1347.

    Article  CAS  Google Scholar 

  • Pan, Z., Rimando, A. M., Baerson, S. R., Fishbein, M., and Duke, S. O. 2007. Functional characterization of desaturases involved in the formation of the terminal double bond of an unusual 16:3D9,12,15 fatty acid isolated from Sorghum bicolor root hairs. J. Biol. Chem. 282:4326–4335.

    Article  PubMed  CAS  Google Scholar 

  • Pickett, J. A. 2012. Chemical ecology and sustainable food production. J. Chem. Ecol. 38:1071.

    Article  PubMed  CAS  Google Scholar 

  • Putnam, A. R. 1990. Vegetable weed control with minimal inputs. Hortscience 25:155–158.

    Google Scholar 

  • Putnam, A. R. and Defrank, J. 1979. Use of Allelopathic Cover Crops to Inhibit Weeds. IX International Congress of Plant Protection. Burgess Publishing Co., Minneapolis. pp. 580–582.

    Google Scholar 

  • Putnam, A. R. and Defrank, J. 1983. Use of allelopathic cover crops to inhibit weeds. Crop Prot. 2:173–182.

    Article  Google Scholar 

  • Putnam, A. R., Defrank, J., and Barnes, J. P. 1983. Exploitation of allelopathy for weed control in annual and perennial cropping systems. J. Chem. Ecol. 9:1001–1010.

    Article  Google Scholar 

  • Rasmussen, J. A., Hejl, A. M., Einhellig, F. A., and Thomas, J. A. 1992. Sorgoleone from root exudates inhibits mitochondrial functions. J. Chem. Ecol. 18:197–207.

    Article  CAS  Google Scholar 

  • Rimando, A. M., Dayan, F. E., Czarnota, M. A., Weston, L. A., and Duke, S. O. 1998. A new photosystem II electron transfer inhibitor from Sorghum bicolor. J. Nat. Prod. 61:927–930.

    Article  PubMed  CAS  Google Scholar 

  • Roth, C. M., James, P. S., and Gary, M. P. 2000. Allelopathy of sorghum on wheat under several tillage systems. Agron. J. 92:855–860.

    Article  Google Scholar 

  • Sene, M., Dore, T., and Pellisier, F. 2000. Effect of phenolic acids in soil under and between rows of a prior sorghum (Sorghum bicolor) crop on germination, emergence and seedling growth of peanut (Arachis hypogea). J. Chem. Ecol. 26:625–637.

    Article  CAS  Google Scholar 

  • Sistachs, M., Padilla, C., Gomez, I., and Barrientos, A. 1991. Intercropping of forage sorghum, maize and soybean during establishment of different grasses in a montomorillonitic soil. II. Guinea grass (P. maximum Jacq). Cuban J. Agric. Sci. 25:83–87.

    Google Scholar 

  • Uddin, M. R., Park, W. T., Kim, Y. K., Pyon, J. Y., and Park, S. U. 2011. Effects of auxins on sorgoleone accumulation and genes for sorgoleone biosynthesis in sorghum roots. J. Agric. Food Chem. 59:12948–12953.

    Article  PubMed  CAS  Google Scholar 

  • Uremis, I., Ahmet, M., Uludag, A., and Sangun, M. 2009. Allelopathic potential of residue of 6 Brassica species on Johnsongrass [Sorghum haplense (L.) Pers.]. Afr. J. Biotechnol. 8:3497–3501.

    CAS  Google Scholar 

  • VIAENE, N. M. and ABAWI, G. S. 1998. Management of Meloidogyne halpa on lettuce in organic soil with sudangrass as a cover crop. Plant Dis. 82:945–952.

    Article  Google Scholar 

  • Weston, L. A. 1996. Utilization of allelopathy for weed management in agroecosystems. Agron. J. 88:860–866.

    Article  Google Scholar 

  • Weston, L. A. 2005. History and current trends in the use of allelopathy for weed management. HortTechnology 15:529–534.

    Google Scholar 

  • Weston, L. A. and Czarnota, M. A. 2001. Activity and persistence of sorgoleone, a long-chain hydroquinone produced by Sorghum bicolor, pp. 363–377, in R. Kohli et al. (eds.), Allelopathy and Agroecosystems. The Hayworth Press, London.

    Google Scholar 

  • Weston, L. A. and Duke, S. O. 2003. Weed and crop allelopathy. Crit. Rev. Plant Sci. 22:367–389.

    Article  CAS  Google Scholar 

  • Weston, L. A., Harmon, R., and Mueller, S. 1989. Allelopathic potential of sorghum-sudangrass hybrid (sudex) (Sorghum bicolor x Sorghum sudanese). J. Chem. Ecol. 15:1855–1865.

    Article  Google Scholar 

  • Weston, L. A., Nimbal, C. I., Czarnota, M. A. 1997. Activity and Persistence of Sorgoleone, a Long-Chain Hydroquinone Produced by Sorghum bicolor. Brighton Crop Protection Conference, Brighton U.K. pp. 509–516.

  • Weston, L. A., Ryan, P. R., and Watt, M. 2012. Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J. Exp. Bot. 63:2445–3454.

    Article  Google Scholar 

  • Yang, X., Owens, T. G., Scheffler, B. E., and Weston, L. A. 2004a. Manipulation of root hair development and sorgoleone production in sorghum seedlings. J. Chem. Ecol. 30:199–213.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X., Scheffler, B. E., and Weston, L. A. 2004b. SOR1, a gene associated with bioherbicide production in sorghum root hairs. J. Exp. Bot. 55:2251–2259.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, W., Jiangg, F., and Oul, J. 2011. Global Pesticide Consumption and Pollution: with China as a Focus, International Academy of Ecology and Environmental Sciences Conference, Beijing, China. pp. 125–144.

Download references

Acknowledgments

Professor L. A. Weston acknowledges the support of the NSW Office of Science and Medical Research which awarded her a Biofirst Life Sciences Fellowship in 2008. The authors are appreciative of the manuscript reviews received and acknowledge this assistance in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie A. Weston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weston, L.A., Alsaadawi, I.S. & Baerson, S.R. Sorghum Allelopathy—From Ecosystem to Molecule. J Chem Ecol 39, 142–153 (2013). https://doi.org/10.1007/s10886-013-0245-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0245-8

Keywords

Navigation