Abstract
Negative plant-soil feedbacks play an important role in soil sickness, which is one of the factors limiting the sustainable development of intensive agriculture. Various factors, such as the buildup of pests in the soil, disorder in physico-chemical soil properties, autotoxicity, and other unknown factors may contribute to soil sickness. A range of autotoxins have been identified, and these exhibit their allelopathic potential by influencing cell division, water and ion uptake, dark respiration, ATP synthesis, redox homeostasis, gene expression, and defense responses. Meanwhile, there are great interspecific and intraspecific differences in the uptake and accumulation of autotoxins, which contribute to the specific differences in growth in response to different autotoxins. Importantly, the autotoxins also influence soil microbes and vice versa, leading to an increased or decreased degree of soil sickness. In many cases, autotoxins may enhance soilborne diseases by predisposing the roots to infection by soilborne pathogens through a direct biochemical and physiological effect. Some approaches, such as screening for low autotoxic potential and disease-resistant genotypes, proper rotation and intercropping, proper soil and plant residue management, adoption of resistant plant species as rootstocks, introduction of beneficial microbes, physical removal of phytotoxins, and soil sterilization, are proposed. We discuss the challenges that we are facing and possible approaches to these.
Similar content being viewed by others
References
Asaduzzaman, M. and Asao, T. 2012. Autotoxicity in beans and their allelochemicals. Sci Hortic-Amsterdam 134:26–31.
Asaduzzaman, M., Kobayashi, Y., Isogami, K., Tokura, M., Tokumasa, K., and Asao, T. 2012. Growth and yield recovery in strawberry plants under autotoxicity through electrodegradation. Eur. J. Hortic. Sci. 77:58–67.
Asao, T., Shimizu, N., Ohta, K., and Hosoki, T. 1999. Effect of rootstocks on the extension of harvest period of cucumber (Cucumis sativus L.) grown in non-renewal hydroponics. J. Jpn. Soc. Hortic. Sci. 68:598–602.
Asao, T., Hasegawa, K., Sueda, Y., Tomita, K., Taniguchi, K., Hosoki, T., Pramanik, M. H. R., and Matsui, Y. 2003. Autotoxicity of root exudates from taro. Sci Hortic-Amsterdam 97:389–396.
Asao, T., Kitazawa, H., Ban, T., Pramanik, M. H. R., Matsui, Y., and Hosoki, T. 2004a. Search of autotoxic substances in some leaf vegetables. J. Jpn. Soc. Hortic. Sci. 73:247–249.
Asao, T., Kitazawa, H., Tomita, K., Suyama, K., Yamamoto, H., Hosoki, T., and Pramanik, M. H. R. 2004b. Mitigation of cucumber autotoxicity in hydroponic culture using microbial strain. Sci Hortic-Amsterdam 99:207–214.
Benizri, E., Piutti, S., Verger, S., Pages, L., Vercambre, G., Poessel, J. L., and Michelot, P. 2005. Replant diseases: Bacterial community structure and diversity in peach rhizosphere as determined by metabolic and genetic fingerprinting. Soil Biol. Biochem. 37:1738–1746.
Berg, G. 2009. Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84:11–18.
Besserer, A., Puech-Pagés, V., Kiefer, P., Gomez-Roldan, V., Jauneau, A., Roy, S., Portais, J. C., Roux, C., Bécard, G., and Séjalon-Delmas, N. 2006. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol. 4:e226.
Bever, J. D., Dickie, I. A., Facelli, E., Facelli, J. M., Klironomos, J., Moora, M., Rillig, M. C., Stock, W. D., Tibbett, M., and Zobel, M. 2010. Rooting theories of plant community ecology in microbial interactions. Trends Ecol. Evol. 25:468–478.
Blum, U. 1998. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J. Chem. Ecol. 24:685–708.
Blum, U., Staman, K. L., Flint, L. J., and Shafer, S. R. 2000. Induction and/or selection of phenolic acid-utilizing bulk-soil and rhizosphere bacteria and their influence on phenolic acid phytotoxicity. J. Chem. Ecol. 26:2059–2078.
Börner, H. 1959. The apple replant problem. I. The excretion of phlorizin from apple root residues. Contributions of the Boyce Thompson Institute 20:39–56.
Börner, H. 1960. Liberation of organic substances from higher plants and their role in the soil sickness problem. Bot. Rev. 26:393–424.
Bulgarelli, D., Rott, M., Schlaeppi, K., van Themaat, E. V. L., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., Peplies, J., Gloeckner, F. O., Amann, R., Eickhorst, T., and Schulze-Lefert, P. 2012. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95.
Burger, W. P. and Small, J. G. C. 1983. Allelopathy in citrus orchards. Sci Hortic-Amsterdam 20:361–375.
Caboun, V. 2005. Soil sickness in forestry trees. Allelopath. J. 16:199–208.
Canals, R. M., Emeterio, L. S., and Peralta, J. 2005. Autotoxicity in Lolium Rigidum: Analyzing the role of chemically mediated interactions in annual plant populations. J. Theor. Biol. 235:402–407.
Cao, P. R., Liu, C. Y., and Li, D. 2011. Autointoxication of tea (Camellia sinensis) and identification of its autotoxins. Allelopath. J. 28:155–165.
Carter, M. R. and Sanderson, J. B. 2001. Influence of conservation tillage and rotation length on potato productivity, tuber disease and soil quality parameters on a fine sandy loam in eastern Canada. Soil Tillage Res. 63:1–13.
Caspersen, S., Alsanius, B. W., Sundin, P., and Jensen, P. 2000. Bacterial amelioration of ferulic acid toxicity to hydroponically grown lettuce (Lactuca sativa L.). Soil Biol. Biochem. 32:1063–1070.
Chen, L. H., Yang, X. M., Raza, W., Li, J. H., Liu, Y. X., Qiu, M. H., Zhang, F. G., and Shen, Q. R. 2011a. Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers. Appl. Microbiol. Biotechnol. 89:1653–1663.
Chen, S. L., Zhou, B. L., Lin, S. S., Li, X., and Ye, X. L. 2011b. Accumulation of cinnamic acid and vanillin in eggplant root exudates and the relationship with continuous cropping obstacle. Afr. J. Biotechnol. 10:2659–2665.
Chon, S. U., Choi, S. K., Jung, S., Jang, H. G., Pyo, B. S., and Kim, S. M. 2002. Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass. Crop Prot. 21:1077–1082.
Chou, C. H. 1999. Roles of allelopathy in plant biodiversity and sustainable agriculture. Crit. Rev. Plant Sci. 18:609–636.
Chou, C. H. and Lin, H. J. 1976. Autointoxication mechanisms of Oryza sativa. I. Phytotoxic effects of decomposing rice residues in soil. J. Chem. Ecol. 2:353–367.
Chou, C. H. and Waller, G. R. 1980. Possible allelopathic constituents of Coffea arabica. J. Chem. Ecol. 6:643–654.
Chung, I. M., Seigler, D., Miller, D. A., and Kyung, S. H. 2000. Autotoxic compounds from fresh alfalfa leaf extracts: Identification and biological activity. J. Chem. Ecol. 26:315–327.
Cohen, M. F., Yamasaki, H., and Mazzola, M. 2005. Brassica napus seed meal soil amendment modifies microbial community structure, nitric oxide production and incidence of rhizoctonia root rot. Soil Biol. Biochem. 37:1215–1227.
Dayan, F. E. 2006. Factors modulating the levels of the allelochemical sorgoleone in Sorghum bicolor. Planta 224:339–346.
Ding, J., Sun, Y., Xiao, C. L., Shi, K., Zhou, Y. H., and Yu, J. Q. 2007. Physiological basis of different allelopathic reactions of cucumber and figleaf gourd plants to cinnamic acid. J. Exp. Bot. 58:3765–3773.
Dornbos, D. L., Spencer, G. F., and Miller, R. W. 1990. Medicarpin delays alfalfa seed-germination and seedling growth. Crop Sci. 30:162–166.
Farooq, M., Jabran, K., Cheema, Z. A., Wahid, A., and Siddique, K. H. 2011. The role of allelopathy in agricultural pest management. Pest Manag Sci 67:493–506.
Fredrickson, J. K. and Elliott, L. F. 1985. Effects on winter-wheat seedling growth by toxin-producing rhizobacteria. Plant Soil 83:399–409.
Garbeva, P., van Veen, J. A., and van Elsas, J. D. 2004. Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 42:243–270.
Gog, L., Berenbaum, M. R., Delucia, E. H., and Zangerl, A. R. 2005. Autotoxic effects of essential oils on photosynthesis in parsley, parsnip, and rough lemon. Chemoecology 15:115–119.
Grodzinsky, A. M. 2006. Allelopathy in Soil Sickness. Scientific Publishers, Jodhpur.
Gu, Y. H. and Mazzola, M. 2003. Modification of fluorescent pseudomonad community and control of apple replant disease induced in a wheat cultivar-specific manner. Appl. Soil Ecol. 24:57–72.
Guenzi, W. D. and Mccalla, T. M. 1966. Phytotoxic substances extracted from soil. Soil Sci. Soc. Am. Pro 30:214–216.
Hartung, A. C. and Stephens, C. T. 1983. Effects of allelopathic substances produced by asparagus on incidence and severity of asparagus decline due to fusarium crown rot. J. Chem. Ecol. 9:1163–1174.
Hartung, A. C., Nair, M. G., and Putnam, A. R. 1990. Isolation and characterization of phytotoxic compounds from asparagus (Asparagus officinalis L) roots. J. Chem. Ecol. 16:1707–1718.
He, C. N., Gao, W. W., Yang, J. X., Bi, W., Zhang, X. S., and Zhao, Y. J. 2009. Identification of autotoxic compounds from fibrous roots of Panax quinquefolium L. Plant Soil 318:63–72.
Huang, Z. Q., Liao, L. P., and Wang, S. L. 2000. Allelopathy of phenolics from decomposing stump-roots in replant chinese fir woodland. J. Chem. Ecol. 26:2211–2219.
Kardol, P., Bezemer, T. M., and van der Putten, W. H. 2006. Temporal variation in plant-soil feedback controls succession. Ecol. Lett. 9:1080–1088.
Kato-noguchi, H. and Peters, R. 2013. The role of momilactones in rice allelopathy. J. Chem. Ecol., this issue.
Kaur, H., Kaur, R., Kaur, S., Baldwin, I. T., and Inderjit 2009. Taking ecological function seriously: Soil microbial communities can obviate allelopathic effects of released metabolites. PLoS ONE 4(3).
Kennedy, A. C. 1999. Bacterial diversity in agroecosystems. Agric. Ecosyst. Environ. 74(1–3):65–76.
Khare, E. and Arora, N. K. 2010. Effect of indole-3-acetic acid (IAA) produced by Pseudomonas aeruginosa in suppression of charcoal rot disease of chickpea. Curr. Microbiol. 61:64–68.
Kitazawa, H., Asao, T., Ban, T., Pramanik, M. H. R., and Hosoki, T. 2005. Autotoxicity of root exudates from strawberry in hydroponic culture. J. Hortic. Sci. Biotechnol. 80:677–680.
Klironomos, J. N. 2002. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70.
Knops, J. M. H., Tilman, D., Haddad, N. M., Naeem, S., Mitchell, C. E., Haarstad, J., Ritchie, M. E., Howe, K. M., Reich, P. B., Siemann, E., et al. 1999. Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecol. Lett. 2:286–293.
Komada, H. 1988. The Occurrence, Ecology of Soil-Borne Diseases and Their Control. Takii Seed Co. Ltd, Japan. in Japanese.
Kong, C. H., Chen, L. C., Xu, X. H., Wang, P., and Wang, S. L. 2008. Allelochemicals and activities in a replanted chinese fir (Cunninghamia lanceolata (Lamb.) Hook) tree ecosystem. J. Agric. Food Chem 56:11734–11739.
Kostenko, O., van de Voorde, T. F. J., Mulder, P. P. J., van der Putten, W. H., and Martijn Bezemer, T. 2012. Legacy effects of aboveground-belowground interactions. Ecol. Lett 15:813–821.
Kulmatiski, A., Beard, K. H., Stevens, J. R., and Cobbold, S. M. 2008. Plant-soil feedbacks: a meta-analytical review. Ecol. Lett. 11:980–992.
Larkin, R. P. 2003. Characterization of soil microbial communities under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles. Soil Biol. Biochem. 35:1451–1466.
Li, Z. F., Yang, Y. Q., Xie, D. F., Zhu, L. F., Zhang, Z. G., and Lin, W. X. 2012. Identification of autotoxic compounds in fibrous roots of rehmannia (Rehmannia glutinosa Libosch.). PLoS ONE 7(1):e28806. doi:10.1371/journal.pone.0028806.
Li, C., Li, X., Kong, W., Wu, Y., and Wang, J. 2010. Effect of monoculture soybean on soil microbial community in the Northeast China. Plant Soil 330:423–433.
Lodhi, M. A. K., Bilal, R., and Malik, K. A. 1987. Allelopathy in agroecosystems—wheat phytotoxicity and its possible roles in crop-rotation. J. Chem. Ecol. 13:1881–1891.
Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., Rio, T. G. D., Edgar, R. C., Eickhorst, T., Ley, R. E., Hugenholtz, P., Tringe, S. G., and Dangl, J. L. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90.
Mangla, S., Inderjit, and Callaway, R. M. 2008. Exotic invasive plant accumulates native soil pathogens which inhibit native plants. J. Ecol 96:58–67.
Mazzola, M. 2002. Mechanisms of natural soil suppressiveness to soilborne diseases. Anton Leeuw Int JG 81:557–564.
Mazzola, M. and Gu, Y. H. 2000. Impact of wheat cultivation on microbial communities from replant soils and apple growth in greenhouse trials. Phytopathology 90:114–119.
Mazzola, M., Granatstein, D. M., Elfving, D. C., and Mullinix, K. 2001. Suppression of specific apple root pathogens by Prassica napus seed meal amendment regardless of glucosinolate content. Phytopathology 91:673–679.
Mazzola, M., Granatstein, D. M., Elfving, D. C., Mullinix, K., and Gu, Y. H. 2002. Cultural management of microbial community structure to enhance growth of apple in replant soils. Phytopathology 92:1363–1366.
Mazzola, M., Funnell, D. L., and Raaijmakers, J. M. 2004. Wheat cultivar-specific selection of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas species from resident soil populations. Microb. Ecol. 48:338–348.
Meharg, A. A. and Killham, K. 1995. Loss of exudates from the roots of Perennial ryegrass inoculated with a range of microorganisms. Plant Soil 170:345–349.
Miller, R. W., Kleiman, R., Powell, R. G., and Putnam, A. R. 1988. Germination and growth-inhibitors of Alfalfa. J. Nat. Prod. 51:328–330.
Miller, H. G., Ikawa, M., and Peirce, L. C. 1991. Caffeic acid identified as an inhibitory compound in asparagus root filtrate. HortScience 26:1525–1527.
Miyama, Y., Sunada, K., Fujiwara, S., and Hashimoto, K. 2009. Photocatalytic treatment of waste nutrient solution from soil-less cultivation of tomatoes planted in rice hull substrate. Plant Soil 318:275–283.
Nayyar, A., Hamel, C., Lafond, G., Gossen, B. D., Hanson, K., and Germida, J. 2009. Soil microbial quality associated with yield reduction in continuous-pea. Appl. Soil Ecol. 43:115–121.
Neal, A. L., Ahmad, S., Gordon-Weeks, R., and Ton, J. 2012. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. Plos One 7:e35498.
Nicol, R. W., Yousef, L., Traquair, J. A., and Bernards, M. A. 2003. Ginsenosides stimulate the growth of soilborne pathogens of American ginseng. Phytochemistry 64:257–264.
Ogweno, J. O. and Yu, J. Q. 2006. Autotoxic potential in soil sickness: A re-examination. Allelopathy J. 18:93–101.
Patrick, Z. A. 1955. The peach replant problem in Ontario. II. Toxic substances from microbial decomposition products of peach root residues. Can. J. Bot. 33:481–486.
Patrick, Z. A. and Koch, L. W. 1958. Inhibition of respiration, germination and growth by substances arising during the decomposition of certain plant residues in the soil. Can. J. Bot. 36:621–647.
Pramanik, M. H. R., Nagai, M., Asao, T., and Matsui, Y. 2000. Effects of temperature and photoperiod on phytotoxic root exudates of cucumber (Cucumis sativus) in hydroponic culture. J. Chem. Ecol. 26:1953–1967.
Rice, E. L. 1984. Allelopathy. Academic, New York.
Ruan, X., Li, Z. H., Wang, Q., Pan, C. D., Jiang, D. A., and Wang, G. G. 2011. Autotoxicity and allelopathy of 3,4-dihydroxyacetophenone isolated from Picea schrenkiana needles. Molecules 16:8874–8893.
Russell, E. J. and Petherbridge, F. R. 1912. Investigations on “Sickness” in soil. II. “Sickness” in glasshouse soils. J. Agric. Sci. 5:86–U11.
Schippers, B., Bakker, A. W., and Bakker, P. A. H. M. 1987. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu. Rev. Phytopathol. 25:339–358.
Schreiner, O. and Reed, H. S. 1907. The production of deleterious excretions by roots. Bull Torrey Bot. Club. 34:279–303.
Schreiner, O. and Shorey, E. C. 1909. The isolation of harmful organic substances from soils. U. S. Depart. Agric. Bureau Soils Bull. 53:1–33.
Schreiner, O. and Sullivan, M. X. 1909. Soil fatigue caused by organic compounds. J. Biol. Chem. 6:39–50.
Shi, K., Wang, L., Zhou, Y. H., and Yu, J. Q. 2009. Effects of calcium cyanamide on soil microbial communities and Fusarium oxysporum f. sp cucumberinum. Chemosphere 75:872–877.
Shiomi, Y., Nishiyama, M., Onizuka, T., and Marumoto, T. 1999. Comparison of bacterial community structures in the rhizoplane of tomato plants grown in soils suppressive and conducive towards bacterial wilt. Appl. Environ. Microbiol. 65:3996–4001.
Singh, H. P., Batish, D. R., and Kohli, R. K. 1999. Autotoxicity: Concept, organisms, and ecological significance. Crit. Rev. Plant Sci. 18:757–772.
Sturz, A. V. and Christie, B. R. 2003. Beneficial microbial allelopathies in the root zone: The management of soil quality and plant disease with rhizobacteria. Soil Till. Res. 72:107–123.
Sunada, K., Ding, X. G., Utami, M. S., Kawashima, Y., Miyama, Y., and Hashimoto, K. 2008. Detoxification of phytotoxic compounds by TiO2 photocatalysis in a recycling hydroponic cultivation system of asparagus. J. Agric. Food Chem. 56:4819–4824.
Szabo, K. and Wittenmayer, L. 2000. Plant specific root exudations as possible cause for specific replant diseases in rosaceen. J Appl Bot-Angew Bot 74:191–197.
Takijima, Y. and Hayashi, T. 1959. Studies on soil sickness in crop. 2. Substances exuded from root and the growth-inhibiting activity of a nutrient solution for crop cultivation. Agric. Hortic 34:1417–1418. in Japanese.
Theron, J. and Cloete, T. E. 2000. Molecular techniques for determining microbial diversity and community structure in natural environments. Crit. Rev. Microbiol. 26:37–57.
Thevathasan, N. V., Gordon, A. M., and Voroney, R. P. 1998. Juglone (5-hydroxy-1,4 napthoquinone) and soil nitrogen transformation interactions under a walnut plantation in southern Ontario. Canada. Agrofor. Syst. 44:151–162.
Validov, S., Mavrodi, O., de la Fuente, L., Boronin, A., Weller, D., Thomashow, L., and Mavrodi, D. 2005. Antagonistic activity among 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. FEMS Microbiol. Lett. 242:249–256.
van de Voorde, T. F. J., Ruijten, M., van der Putten, W. H., and Bezemer, T. M. 2012. Can the negative plant-soil feedback of Jacobaea vulgaris be explained by autotoxicity? Basic App. Ecol 13:533–541.
Weidenhamer, J., Li, M., Allman, J., Bergosh, R., and Posner, M. 2013. Evidence does not support a role for gallic acid in Phragmites australis invasion success. J. Chem. Ecol., this issue.
Weller, D. M., Raaijmakers, J. M., Gardener, B. B. M., and Thomashow, L. S. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol 40:309–348.
Wu, F. Z., Han, X., and Wang, X. Z. 2006. Allelopathic effect of root exudates of cucumber cultivars on fusarium oxysporum. Allelopathy J. 18:163–172.
Wu, F. Z., Wang, X. Z., and Xue, C. Y. 2009. Effect of cinnamic acid on soil microbial characteristics in the cucumber rhizosphere. Eur. J. Soil Biol. 45:356–362.
Wu, H. S., Luo, J., Raza, W., Liu, Y. X., Gu, M. A., Chen, G., Hu, X. F., Wang, J. H., Mao, Z. S., and Shen, Q. R. 2010. Effect of exogenously added ferulic acid on in vitro Fusarium oxysporum f. sp niveum. Sci. Hortic-Amsterdam 124:448–453.
Xu, M. M., Galhano, R., Wiemann, P., Bueno, E., Tiernan, M., Wu, W., Chung, I. M., Gershenzon, J., Tudzynski, B., Sesma, A., and Peter, R. J. 2012. Genetic evidence for natural product-mediated plant-plant allelopathy in rice (Oryza sativa). New Phytol. 193:570–575.
Ye, S. F., Yu, J. Q., Peng, Y. H., Zheng, J. H., and Zou, L. Y. 2004. Incidence of fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates. Plant Soil 263:143–150.
Ye, S. F., Zhou, Y. H., Sun, Y., Zou, L. Y., and Yu, J. Q. 2006. Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of fusarium wilt. Environ. Exp. Bot. 56:255–262.
Yu, J. Q. 1999. Allelopathic suppression of Pseudomonas solanacearum infection of tomato (Lycopersicon esculentum) in a tomato-Chinese chive (Allium tuberosum) intercropping system. J. Chem. Ecol. 25:2409–2417.
Yu, J. Q. and Matsui, Y. 1993. Extraction and identification of phytotoxic substances accumulated in nutrient solution for the hydroponic culture of tomato. Soil Sci. Plant Nutr. 39:691–700.
Yu, J. Q. and Matsui, Y. 1994. Phytotoxic substances in root exudates of cucumber (Cucumis sativus L). J. Chem. Ecol. 20:21–31.
Yu, J. Q. and Matsui, Y. 1997. Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings. J. Chem. Ecol. 23:817–827.
Yu, J. Q. and Matsui, Y. 1999. Autointoxication of Root Exudates in Pisum sativus. Acta Hort. Sinica 26:175–179.
Yu, J. Q., Lee, K. S., and Matsui, Y. 1993. Effect of the addition of activated-charcoal to the nutrient solution on the growth of tomato in hydroponic culture. Soil Sci. Plant Nutr. 39:13–22.
Yu, J. Q., Shou, S. Y., Qian, Y. R., Zhu, Z. J., and Hu, W. H. 2000. Autotoxic potential of cucurbit crops. Plant Soil 223:147–151.
Yu, J. Q., Ye, S. F., Zhang, M. F., and Hu, W. H. 2003. Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem. Syst. Ecol. 31:129–139.
Yu, J. Q., Sun, Y., Zhang, Y., Ding, J., Xia, X. J., Xiao, C. L., Shi, K., and Zhou, Y. H. 2009. Selective trans-cinnamic acid uptake impairs [Ca2+](cyt) homeostasis and growth in Cucumis sativus L. J. Chem. Ecol. 35:1471–1477.
Zhang, Y., Gu, M., Xia, X. J., Shi, K., Zhou, Y. H., and Yu, J. Q. 2009. Effects of phenylcarboxylic acids on mitosis, endoreduplication and expression of cell cycle-related genes in roots of cucumber (Cucumis sativus L.). J. Chem. Ecol. 35:679–688.
Zhang, Y., Gu, M., Shi, K., Zhou, Y. H., and Yu, J. Q. 2010a. Effects of aqueous root extracts and hydrophobic root exudates of cucumber (Cucumis sativus L.) on nuclei DNA content and expression of cell cycle-related genes in cucumber radicles. Plant Soil 327:455–463.
Zhang, Y., Gu, M., Xia, X. J., Shi, K., Zhou, Y. H., and Yu, J. Q. 2010b. Alleviation of autotoxin-induced growth inhibition and respiration by sucrose in Cucumis sativus (L.). Allelopathy J 25:147–154.
Zhang, S. S., Jin, Y. L., Zhu, W. J., Tang, J. J., Hu, S. J., Zhou, T. S., and Chen, X. 2010c. Baicalin released from Scutellaria baicalensis induces autotoxicity and promotes soilborn pathogens. J. Chem. Ecol. 36:329–338.
Zhang, S. S., Zhu, W. J., Wang, B., Tang, J. J., and Chen, X. 2011. Secondary metabolites from the invasive Solidago canadensis L. Accumulation in soil and contribution to inhibition of soil pathogen pythium ultimum. Appl. Soil Ecol. 48:280–286.
Zhang, H., Mallik, A., and Zeng, R. 2013. Control of Panama disease of banana by rotating and intercropping with Chinese chive (Allium tuberosum Rottler): Role of plant volatiles. J. Chem. Ecol., this issue.
Acknowledgements
This work was supported by the National Basic Research Program of China (2009CB119000), the National Key Technology R&D Program of China (2011BAD12B04) and the National Natural Science Foundation of China (31272155).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Huang, LF., Song, LX., Xia, XJ. et al. Plant-Soil Feedbacks and Soil Sickness: From Mechanisms to Application in Agriculture. J Chem Ecol 39, 232–242 (2013). https://doi.org/10.1007/s10886-013-0244-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10886-013-0244-9