Spider Pheromones – a Structural Perspective

Abstract

Spiders use pheromones for sexual communication, as do other animals such as insects. Nevertheless, knowledge about their chemical structure, function, and biosynthesis is only now being unraveled. Many studies have shown the existence of spider pheromones, but the responsible compounds have been elucidated in only a few cases. This review focuses on a structural approach because we need to know the involved chemistry if we are to understand fully the function of a pheromonal communication system. Pheromones from members of the spider families Pholcidae, Araneidae, Linyphiidae, Agenelidae, and Ctenidae are currently being identified and will be discussed in this review. Some of these compounds belong to compound classes not known from other arthropod pheromones, such as citric acid derivatives or acylated amino acids, whereas others originate from more common fatty acid metabolism. Their putative biosynthesis, their function, and the identification methods used will be discussed. Furthermore, other semiochemicals and the chemistry of apolar surface lipids that potentially might be used by spiders for communication are described briefly.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Adachi, Y., Kanehisa, K., and Tsumuki, H. 1985. Catabolic formation of methacrylic acid and tiglic acid from the branched chain amino acids in the pygidial defensive glands of Carabus yaconinus Bates (Coleoptera: Carabidae). Appl. Entomol. Zool. 20:492–493.

    CAS  Google Scholar 

  2. Aisenberg, A., Baruffaldi, L., and González, M. 2010. Behavioural evidence of male volatile pheromones in the sex-role reversed wolf spiders Allocosa brasiliensis and Allocosa alticeps. Naturwissenschaften 97:63–70.

    PubMed  Article  CAS  Google Scholar 

  3. Allan, R. A., Elgar, M. A., and Capon, R. J. 1996. Exploitation of an ant chemical alarm signal by the zodariid spider Habronestes bradleyi Walckenaer. Proc. R. Soc. London, Ser. B 263:69–73.

    Article  CAS  Google Scholar 

  4. Allan, R. A., Capon, R. J., Brown, W. V., and Elgar, M. A. 2002. Mimicry of host cuticular hydrocarbons by salticid spider Cosmophasis bitaeniata that preys on larvae of tree ants Oecophylla smaragdina. J. Chem. Ecol. 28:835–848.

    PubMed  Article  CAS  Google Scholar 

  5. Anava, A. and Lubin, Y. 1993. Presence of gender cues in the web of a widow spider, Latrodectus revivensis, and a description of courtship behavior. Bull. Br. Arachnol. Soc. 9:119–122.

    Google Scholar 

  6. Anderson, J. T. and Morse, D. H. 2001. Pick-up lines: Cues used by male crab spiders to find reproductive females. Behav. Ecol. 12:360–366.

    Article  Google Scholar 

  7. Andrade, M. C. B. and Kasumovic, M. M. 2005. Terminal investment strategies and male mate choice: Extreme tests of Bateman. Integr. Comp. Biol. 45:838–847.

    PubMed  Article  Google Scholar 

  8. Attygalle, A. B., Wu, X., and Will, K. W. 2007. Biosynthesis of tiglic, ethacrylic, and 2-methylbutyric acids in a carabid beetle, Pterostichus (Hypherpes) californicus. J. Chem. Ecol. 33:963–970.

    PubMed  Article  CAS  Google Scholar 

  9. Bagnères, A. G., Trabalon, M., Blomquist, G. J., and Schulz, S. 1997. Waxes of the social spider Anelosimus eximus; abundance of novel n-propyl esters of long-chain methyl-branched fatty acids. Arch. Insect Biochem. Physiol. 36:295–314.

    Article  Google Scholar 

  10. Barth, F. G. 1993. Sensory guidance in spider pre-copulatory behaviour. Comp. Biochem. Physiol. A. 104:717–733.

    Article  Google Scholar 

  11. Barth, F. G. and Schmitt, A. 1991. Species recognition and species isolation in wandering spiders (Cupiennius spp.; Ctenidae). Behav. Ecol. Sociobiol. 29:333–339.

    Article  Google Scholar 

  12. Baruffaldi, L., Costa, F. G., Rodríguez, A., and González, A. 2010. Chemical communication in Schizocosa malitiosa: Evidence of a female contact sex pheromone and persistence in the field. J. Chem. Ecol. 36:759–767.

    PubMed  Article  CAS  Google Scholar 

  13. Becker, E., Riechert, S., and Singer, F. 2005. Male induction of female quiescence/catalepsis during courtship in the spider, Agelenopsis aperta. Behaviour 142:57–70.

    Article  Google Scholar 

  14. Bjorkman-Chiswell, B. T., Kulinski, M. M., Muscat, R. L., Nguyen, K. A., Norton, B. A., Symonds, M. R. E., Westhorpe, G. E., and Elgar, M. A. 2004. Web-building spiders attract prey by storing decaying matter. Naturwissenschaften 91:245–248.

    PubMed  Article  CAS  Google Scholar 

  15. Blomquist, G. and Bagnères, A. 2010. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press, Cambridge. 504 p.

    Google Scholar 

  16. Brown, C. A. 2006. Observations on courtship and copulation of the wolf spider Rabidosa santrita (Araneae, Lycosidae). J. Arachnol. 34:476–479.

    Article  Google Scholar 

  17. Brum, P. E. D., Costa-Schmidt, L. E., and Araújo, A. M. D. 2012. It is a matter of taste: Chemical signals mediate nuptial gift acceptance in a neotropical spider. Behav. Ecol. 23:442–447.

    Article  Google Scholar 

  18. Cárdenas, M., Jiros, P., and Pekár, S. 2012. Selective olfactory attention of a specialised predator to intraspecific chemical signals of its prey. Naturwissenschaften 99:1–9.

    Article  Google Scholar 

  19. Carlson, D. A., Mayer, M. S., Silhacek, D. L., James, D. J., Beroza, M., and Bierl, B. A. 1971. Sex attractant pheromone of the housefly: Isolation, identification and synthesis. Science 174:76–78.

    PubMed  Article  CAS  Google Scholar 

  20. Chinta, S. P., Goller, S., Lux, J., Funke, S., Uhl, G., and Schulz, S. 2010. The sex pheromone of the wasp spider Argiope bruennichi. Angew. Chem. Int. Ed. 49:2033–2036.

    Article  CAS  Google Scholar 

  21. Cross, F. R. and Jackson, R. R. 2009. Mate-odour identification by both sexes of Evarcha culicivora, an East African jumping spider. Behav. Process. 81:74–79.

    Article  Google Scholar 

  22. Cross, F. R. and Jackson, R. R. 2012. The functioning of species-specific olfactory pheromones in the biology of a mosquito-eating jumping spider from East africa. J. Insect Behav. doi:10.1007/s10905-012-9338-4.

  23. Dickschat, J. S., Wenzel, S. C., Bode, H. B., Müller, R., and Schulz, S. 2005. Biosynthesis of volatiles by the myxobacterium Myxococcus xanthus. ChemBioChem. 5:778–787.

    Article  Google Scholar 

  24. Dor, A., Machkour-M’Rabet, S., Legal, L., Williams, T., and Henaut, Y. 2008. Chemically mediated burrow recognition in the Mexican tarantula Brachypelma vagans female. Naturwissenschaften 95:1189–1193.

    PubMed  Article  CAS  Google Scholar 

  25. Elgar, M. A. and Allan, R. A. 2004. Predatory spider mimics acquire colony-specific cuticular hydrocarbons from their ant model prey. Naturwissenschaften 91:143–147.

    PubMed  Article  CAS  Google Scholar 

  26. Elgar, M. A. and Allan, R. A. 2006. Chemical mimicry of the ant Oecophylla smaragdina by the myrmecophilous spider Cosmophasis bitaeniata: Is it colony-specific? J. Ethol. 24:239–246.

    Article  Google Scholar 

  27. Enders, F. 1975. Airborne pheromone probable in orb web spider Argiope aurantia (Araneidae). Br. Arachnol. Soc. News 13:5–6.

    Google Scholar 

  28. Fernández-Montraveta, C. and Cuadrado, M. 2009. Mate attraction in a burrowing wolf-spider (Araneae, Lycosidae) is not olfactory mediated. Ethology 115:375–383.

    Article  Google Scholar 

  29. Francke, W. and Schulz, S. 2010. Pheromones of Terrestrial Invertebrates, pp. 153–223, in L. N. Mander and H. Liu (eds.), Comprehensive Natural Products II. Elsevier, Oxford.

    Google Scholar 

  30. Gaskett, A. C. 2007. Spider sex pheromones: Emission, reception, structures, and functions. Biol. Rev. 82:26–48.

    Article  Google Scholar 

  31. Gaskett, A. C., Herberstein, M. E., Downes, B. J., and Elgar, M. A. 2004. Changes in male mate choice in a sexually cannibalistic orb-web spider (Araneae: Araneidae). Behaviour 141:1197–1210.

    Article  Google Scholar 

  32. Gemeno, C., Yeargan, K. V., and Haynes, K. F. 2000. Aggressive chemical mimicry by the bolas spider Mastophora hutchinsoni: Identification and quantification of a major prey’s sex pheromone components in the spider’s volatile emissions. J. Chem. Ecol. 26:1235–1243.

    Article  CAS  Google Scholar 

  33. Grinsted, L., Bilde, T., and D’Ettorre, P. 2011. Cuticular hydrocarbons as potential kin recognition cues in a subsocial spider. Behav. Ecol. 22:1187–1194.

    Article  Google Scholar 

  34. Haynes, K. F., Yeargan, K. V., Millar, J. G., and Chastan, B. B. 1996. Identification of sex pheromone of Tetanolita myenesalis (Lepidoptera: Noctuidae), a prey species of bolas spiders, Mastophora hutchinsoni. J. Chem. Ecol. 22:75–89.

    Article  CAS  Google Scholar 

  35. Haynes, K. F., Gemeno, C., Yeargan, K. V., Millar, J. G., and Johnson, K. M. 2002. Aggressive chemical mimicry of moth pheromones by a bolas spider: How does this specialist predator attract more than one species of prey? Chemoecology 12:99–105.

    Article  CAS  Google Scholar 

  36. Huber, B. A. 2005. Sexual selection research on spiders: Progress and biases. Biol. Rev. 80:363–385.

    PubMed  Article  Google Scholar 

  37. Jerhot, E., Stoltz, J. A., Andrade, M. C. B., and Schulz, S. 2010. Acylated serine derivatives: A unique class of arthropod pheromones of the Australian redback spider, Latrodectus hasselti. Angew. Chem. Int. Ed. 49:2037–2040.

    Article  CAS  Google Scholar 

  38. Johnson, A., Revis, O., and Johnson, J. C. 2011. Chemical prey cues influence the urban microhabitat preferences of Western black widow spiders, Latrodectus hesperus. J. Arachnol. 39:449–453.

    Article  Google Scholar 

  39. Kasumovic, M. M. and Andrade, M. C. B. 2004. Discrimination of airborne pheromones by mate-searching male western black widow spiders (Latrodectus hesperus): Species- and population-specific responses. Can. J. Zool. 82:1027–1034.

    Google Scholar 

  40. Koh, T. H., Seah, W. K., Yap, L.-M. Y. L., and Li, D. 2009. Pheromone-based female mate choice and its effect on reproductive investment in a spitting spider. Behav. Ecol. Sociobiol. 63:923–930.

    Article  Google Scholar 

  41. Leonard, A. S. and Morse, D. H. 2006. Line-following preferences of male crab spiders, Misumena vatia. Anim. Behav. 71:717–724.

    Article  Google Scholar 

  42. Löfstedt, C., Herrebout, W. M., and Du, J.-W. 1986. Evolution of the ermine moth pheromone tetradecyl acetate. Nature 323:621–623.

    Article  Google Scholar 

  43. Morgan, E. D. 2010. Biosynthesis in Insects, 2nd ed. Royal Society of Chemistry, Cambridge.

    Google Scholar 

  44. Nawrath, T., Gerth, K., Müller, R., and Schulz, S. 2010. Volatile methyl esters of medium chain length from the bacterium Chitinophaga Fx7914. Chem. Biodivers. 7:2228–2253.

    PubMed  Article  CAS  Google Scholar 

  45. Olsen, C. A., Kristensen, A. S., and Strømgaard, K. 2011. Small molecules from spiders used as chemical probes. Angew. Chem. Int. Ed. 50:11296–11311.

    Article  CAS  Google Scholar 

  46. Papke, M., Schulz, S., Tichy, H., Gingl, E., and Ehn, R. 2000. Identification of a new sex pheromone from the silk dragline of the tropical wandering spider Cupiennius salei. Angew. Chem. Int. Ed. 39:4339–4341.

    Article  CAS  Google Scholar 

  47. Papke, M. D., Riechert, S. E., and Schulz, S. 2001. An airborne female pheromone associated with male attraction and courtship in a desert spider. Anim. Behav. 61:877–886.

    Article  Google Scholar 

  48. Perampaladas, K., Stoltz, J. A., and Andrade, M. C. B. 2008. Mated redback spider females re-advertise receptivity months after mating. Ethology 114:589–598.

    Article  Google Scholar 

  49. Persons, M. H., Walker, S. E., Rypstra, A. L., and Marshall, S. D. 2001. Wolf spider predator avoidance tactics and survival in the presence of diet-associated predator cues (Araneae: Lycosidae). Anim. Behav. 61:43–51.

    PubMed  Article  Google Scholar 

  50. Platnick, N. I. 2012. The world spider catalog, version 12.5. <http://research.amnh.org/iz/spiders/catalog/intro1.html>.

  51. Podebrad, F., Heil, M., Scharrer, A., Feldmer, S., Schulte-Mäter, O., Mosandl, A., Sewell, A. C., and Böhles, H. J. 1999. Analysis of methylcitric acid by enantioselective multidimensional gas chromatography–mass spectrometry. J. High Resolut. Chromatogr. 22:604–608.

    Article  CAS  Google Scholar 

  52. Prouvost, O., Trabalon, M., Papke, M., and Schulz, S. 1999. Contact sex signals on web and cuticle of Tegenaria atrica (Araneae, Agenelidae). Arch. Insect Biochem. Physiol. 40:194–202.

    Article  CAS  Google Scholar 

  53. Prpic, N.-M., Schoppmeier, M., and Damen, W. G. M. 2008. The American wandering spider Cupiennius salei. Cold Spring Harb. Protoc.. doi:10.1101/pdb.emo103.

  54. Pruitt, J. N. and Riechert, S. E. 2009. Male mating preference is associated with risk of pre-copulatory cannibalism in a socially polymorphic spider. Behav. Ecol. Sociobiol. 63:1573–1580.

    Article  Google Scholar 

  55. Reddy, C. S. K., Ghai, R., and Rashmi Kalia, V. C. 2003. Polyhydroxyalkanoates: An overview. Bioresour. Technol. 87:137–146.

    PubMed  Article  CAS  Google Scholar 

  56. Riechert, S. E. and Singer, F. D. 1995. Investigation of potential male mate choice in a monogamous spider. Anim. Behav. 49:719–723.

    Google Scholar 

  57. Roberts, J. A. and Uetz, G. W. 2004a. Chemical signaling in a wolf spider: A test of ethospecies discrimination. J. Chem. Ecol. 30:1271–1284.

    PubMed  Article  CAS  Google Scholar 

  58. Roberts, J. A. and Uetz, G. W. 2004b. Species-specificity of chemical signals: Silk source affects discrimination in a wolf spider (Araneae: Lycosidae). J. Insect Behav. 17:477–491.

    Article  Google Scholar 

  59. Roberts, J. A. and Uetz, G. W. 2005. Information content of female chemical signals in the wolf spider, Schizocosa ocreata: Male discrimination of reproductive state and receptivity. Anim. Behav. 70:217–223.

    Article  Google Scholar 

  60. Ross, K. and Smith, R. L. 1979. Aspects of the courtship behavior of the black widow spider Latrodectus hesperus (Araneae: Theridiidae), with evidence for the existence of a contact sex pheromone. J. Arachnol. 7:69–77.

    Google Scholar 

  61. Roth, V. D., Ubick, D., and Dupérré, N. 2005. Spiders of North America: An identification manual. American Arachnological Society, Poughkeepsie and N.Y.. 377p.

    Google Scholar 

  62. Rypstra, A. L., Wieg, C., Walker, S. E., and Persons, M. H. 2003. Mutual mate assessment in wolf spiders: Differences in the cues used by males and females. Ethology 109:315–325.

    Article  Google Scholar 

  63. Schiestl, F. P., Ayasse, M., Paulus, H. F., Löfstedt, C., Hansson, B. S., Ibarra, F., and Francke, W. 2000. Sex pheromone mimicry in the early spider orchid (Ophrys sphegodes): patterns of hydrocarbons as the key mechanism for pollination by sexual deception. J. Comp. Physiol. A. 186:567–574.

    PubMed  Article  CAS  Google Scholar 

  64. Schulz, S. 1997. The chemistry of spider toxins and spider silk. Angew. Chem. Int. Ed. Engl. 36:314–326.

    Article  CAS  Google Scholar 

  65. Schulz, S. 1999. Structural diversity of surface lipids from spiders, pp. 1–7, in U. Diederichsen, T. K. Lindhorst, B. Westermann, and L. A. Wessjohann (eds.), Bioorganic Chemistry - Highlights and New Aspects. Wiley-VCH, Weinheim.

    Google Scholar 

  66. Schulz, S. 2001. Composition of the silk lipids of the spider Nephila clavipes. Lipids 36:637–647.

    PubMed  Article  CAS  Google Scholar 

  67. Schulz, S. 2004. Semiochemistry of spiders pp, pp. 110–150, in R. T. Cardé and J. G. Millar (eds.), Advances in Chemical Ecology. Cambridge University Press, Cambridge.

    Google Scholar 

  68. Schulz, S. and Toft, S. 1993a. Branched long chain alkyl methyl ethers: A new class of lipids from spider silk. Tetrahedron 49:6805–6820.

    Article  CAS  Google Scholar 

  69. Schulz, S. and Toft, S. 1993b. Identification of a sex pheromone from a spider. Science 260:1635–1637.

    PubMed  Article  CAS  Google Scholar 

  70. Singer, F., Riechert, S. E., Xu, H. F., Morris, A. W., Becker, E., Hale, J. A., and Noureddine, M. A. 2000. Analysis of courtship success in the funnel-web spider Agelenopsis aperta. Behaviour 137:93–117.

    Article  Google Scholar 

  71. Stoltz, J. A., McNeil, J. N., and Andrade, M. C. B. 2007. Males assess chemical signals to discriminate just-mated females from virgins in redback spiders. Anim. Behav. 74:1669–1674.

    Article  Google Scholar 

  72. Tichy, H., Gingl, E., Ehn, R., Papke, M., and Schulz, S. 2001. Female sex pheromone of a wandering spider: Identification and sensory reception. J. Comp. Physiol. A. 187:75–78.

    PubMed  Article  CAS  Google Scholar 

  73. Trabalon, M. 2011. Agonistic interactions, cuticular and hemolymphatic lipid variations during the foraging period in spider females Brachypelma albopilosa (Theraphosidae). J. Insect Physiol. 57:735–743.

    PubMed  Article  CAS  Google Scholar 

  74. Trabalon, M. and Assi-Bessekon, D. 2008. Effects of web chemical signatures on intraspecific recognition in a subsocial spider, Coelotes terrestris (Araneae). Anim. Behav. 76:1571–1578.

    Article  Google Scholar 

  75. Trabalon, M. and Bagnères, A. G. 2010. Contact recognition pheromones in spiders and scorpions, pp. 344-374 in G. Blomquist and A. Bagnéres (eds.), Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology, Cambridge University Press.

  76. Trabalon, M., Bagnéres, A. G., and Roland, C. 1997. Contact sex signals in two sympatric spider species, Tegenaria domestica and Tegenaria pagana. J. Chem. Ecol. 23:747–758.

    Article  CAS  Google Scholar 

  77. Trabalon, M., Niogret, J., and Legrand-Frossi, C. 2005. Effect of 20-hydroxyecdysone on cannibalism, sexual behavior, and contact sex pheromone in the solitary female spider, Tegenaria atrica. Gen. Comp. Endocrinol. 144:60–66.

    PubMed  Article  CAS  Google Scholar 

  78. Uhl, G. and Elias, D. O. 2011. Communication, pp. 127–188, in M. E. Herberstein (ed.), Spider behaviour. Cambridge University Press, Cambridge.

  79. van de Veire, M. and Dirinck, P. 1986. Sex pheromone components of the cabbage armyworm, Mamestra brassicae: Isolation, identification and field experiments. Entomol. Exp. Appl. 41:153–155.

    Article  Google Scholar 

  80. von Beeren, C., Schulz, S., Hashim, R., and Witte, V. 2011. Acquisition of chemical recognition cues facilitates integration into ant societies. BMC Ecol. 11:30.

    Google Scholar 

  81. Watson, P. J. 1986. Transmission of a female sex pheromone thwarted by males in the spider Linyphia litigosa (Linyphiidae). Science 233:219–221.

    PubMed  Article  CAS  Google Scholar 

  82. Witte, V., Foitzik, S., Hashim, R., Maschwitz, U., and Schulz, S. 2009. Fine tuning of social integration by two myrmecophiles of the ponerine army ant, Leptogenys distinguenda. J. Chem. Ecol. 35:355–367.

    PubMed  Article  CAS  Google Scholar 

  83. Xiao, Y.-H., Zhang, J.-X., and Li, S.-Q. 2009. A two-component female-produced pheromone of the spider Pholcus beijingensis. J. Chem. Ecol. 35:769–778.

    PubMed  Article  CAS  Google Scholar 

  84. Xiao, Y.-H., Zhang, J.-X., and Li, S.-Q. 2010. Male-specific (Z)-9-tricosene stimulates female mating behaviour in the spider Pholcus beijingensis. Proc. R. Soc. B Biol. Sci. 277:3009–3018.

    Article  CAS  Google Scholar 

  85. Yatsynin, V. G., Rubanova, E. V., and Okhrimenko, N. V. 1996. Identification of female-produced sex pheromones and their geographical differences in pheromone gland extract composition from click beetles (Col., Elateridae). J. Appl. Entomol. 120:463–466.

    Article  Google Scholar 

  86. Zhu, J. and Haynes, K. F. 2004. Sex pheromone components of the bronzed cutworm, Nephelodes minians, a prey species of a bolas spider, Mastophora hutchinsoni. J. Chem. Ecol. 30:2047–2056.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank Prof. Gustavo Hormiga, Washington, USA, for his advice on spider phylogeny and the suggestion for the source of Fig. 1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefan Schulz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schulz, S. Spider Pheromones – a Structural Perspective. J Chem Ecol 39, 1–14 (2013). https://doi.org/10.1007/s10886-012-0231-6

Download citation

Keywords

  • Amino acids
  • Citric acid
  • Lipids
  • Silk
  • Fatty acid biosynthesis