Skip to main content
Log in

Spider Pheromones – a Structural Perspective

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Spiders use pheromones for sexual communication, as do other animals such as insects. Nevertheless, knowledge about their chemical structure, function, and biosynthesis is only now being unraveled. Many studies have shown the existence of spider pheromones, but the responsible compounds have been elucidated in only a few cases. This review focuses on a structural approach because we need to know the involved chemistry if we are to understand fully the function of a pheromonal communication system. Pheromones from members of the spider families Pholcidae, Araneidae, Linyphiidae, Agenelidae, and Ctenidae are currently being identified and will be discussed in this review. Some of these compounds belong to compound classes not known from other arthropod pheromones, such as citric acid derivatives or acylated amino acids, whereas others originate from more common fatty acid metabolism. Their putative biosynthesis, their function, and the identification methods used will be discussed. Furthermore, other semiochemicals and the chemistry of apolar surface lipids that potentially might be used by spiders for communication are described briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adachi, Y., Kanehisa, K., and Tsumuki, H. 1985. Catabolic formation of methacrylic acid and tiglic acid from the branched chain amino acids in the pygidial defensive glands of Carabus yaconinus Bates (Coleoptera: Carabidae). Appl. Entomol. Zool. 20:492–493.

    CAS  Google Scholar 

  • Aisenberg, A., Baruffaldi, L., and González, M. 2010. Behavioural evidence of male volatile pheromones in the sex-role reversed wolf spiders Allocosa brasiliensis and Allocosa alticeps. Naturwissenschaften 97:63–70.

    Article  PubMed  CAS  Google Scholar 

  • Allan, R. A., Elgar, M. A., and Capon, R. J. 1996. Exploitation of an ant chemical alarm signal by the zodariid spider Habronestes bradleyi Walckenaer. Proc. R. Soc. London, Ser. B 263:69–73.

    Article  CAS  Google Scholar 

  • Allan, R. A., Capon, R. J., Brown, W. V., and Elgar, M. A. 2002. Mimicry of host cuticular hydrocarbons by salticid spider Cosmophasis bitaeniata that preys on larvae of tree ants Oecophylla smaragdina. J. Chem. Ecol. 28:835–848.

    Article  PubMed  CAS  Google Scholar 

  • Anava, A. and Lubin, Y. 1993. Presence of gender cues in the web of a widow spider, Latrodectus revivensis, and a description of courtship behavior. Bull. Br. Arachnol. Soc. 9:119–122.

    Google Scholar 

  • Anderson, J. T. and Morse, D. H. 2001. Pick-up lines: Cues used by male crab spiders to find reproductive females. Behav. Ecol. 12:360–366.

    Article  Google Scholar 

  • Andrade, M. C. B. and Kasumovic, M. M. 2005. Terminal investment strategies and male mate choice: Extreme tests of Bateman. Integr. Comp. Biol. 45:838–847.

    Article  PubMed  Google Scholar 

  • Attygalle, A. B., Wu, X., and Will, K. W. 2007. Biosynthesis of tiglic, ethacrylic, and 2-methylbutyric acids in a carabid beetle, Pterostichus (Hypherpes) californicus. J. Chem. Ecol. 33:963–970.

    Article  PubMed  CAS  Google Scholar 

  • Bagnères, A. G., Trabalon, M., Blomquist, G. J., and Schulz, S. 1997. Waxes of the social spider Anelosimus eximus; abundance of novel n-propyl esters of long-chain methyl-branched fatty acids. Arch. Insect Biochem. Physiol. 36:295–314.

    Article  Google Scholar 

  • Barth, F. G. 1993. Sensory guidance in spider pre-copulatory behaviour. Comp. Biochem. Physiol. A. 104:717–733.

    Article  Google Scholar 

  • Barth, F. G. and Schmitt, A. 1991. Species recognition and species isolation in wandering spiders (Cupiennius spp.; Ctenidae). Behav. Ecol. Sociobiol. 29:333–339.

    Article  Google Scholar 

  • Baruffaldi, L., Costa, F. G., Rodríguez, A., and González, A. 2010. Chemical communication in Schizocosa malitiosa: Evidence of a female contact sex pheromone and persistence in the field. J. Chem. Ecol. 36:759–767.

    Article  PubMed  CAS  Google Scholar 

  • Becker, E., Riechert, S., and Singer, F. 2005. Male induction of female quiescence/catalepsis during courtship in the spider, Agelenopsis aperta. Behaviour 142:57–70.

    Article  Google Scholar 

  • Bjorkman-Chiswell, B. T., Kulinski, M. M., Muscat, R. L., Nguyen, K. A., Norton, B. A., Symonds, M. R. E., Westhorpe, G. E., and Elgar, M. A. 2004. Web-building spiders attract prey by storing decaying matter. Naturwissenschaften 91:245–248.

    Article  PubMed  CAS  Google Scholar 

  • Blomquist, G. and Bagnères, A. 2010. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press, Cambridge. 504 p.

    Book  Google Scholar 

  • Brown, C. A. 2006. Observations on courtship and copulation of the wolf spider Rabidosa santrita (Araneae, Lycosidae). J. Arachnol. 34:476–479.

    Article  Google Scholar 

  • Brum, P. E. D., Costa-Schmidt, L. E., and Araújo, A. M. D. 2012. It is a matter of taste: Chemical signals mediate nuptial gift acceptance in a neotropical spider. Behav. Ecol. 23:442–447.

    Article  Google Scholar 

  • Cárdenas, M., Jiros, P., and Pekár, S. 2012. Selective olfactory attention of a specialised predator to intraspecific chemical signals of its prey. Naturwissenschaften 99:1–9.

    Article  Google Scholar 

  • Carlson, D. A., Mayer, M. S., Silhacek, D. L., James, D. J., Beroza, M., and Bierl, B. A. 1971. Sex attractant pheromone of the housefly: Isolation, identification and synthesis. Science 174:76–78.

    Article  PubMed  CAS  Google Scholar 

  • Chinta, S. P., Goller, S., Lux, J., Funke, S., Uhl, G., and Schulz, S. 2010. The sex pheromone of the wasp spider Argiope bruennichi. Angew. Chem. Int. Ed. 49:2033–2036.

    Article  CAS  Google Scholar 

  • Cross, F. R. and Jackson, R. R. 2009. Mate-odour identification by both sexes of Evarcha culicivora, an East African jumping spider. Behav. Process. 81:74–79.

    Article  Google Scholar 

  • Cross, F. R. and Jackson, R. R. 2012. The functioning of species-specific olfactory pheromones in the biology of a mosquito-eating jumping spider from East africa. J. Insect Behav. doi:10.1007/s10905-012-9338-4.

  • Dickschat, J. S., Wenzel, S. C., Bode, H. B., Müller, R., and Schulz, S. 2005. Biosynthesis of volatiles by the myxobacterium Myxococcus xanthus. ChemBioChem. 5:778–787.

    Article  Google Scholar 

  • Dor, A., Machkour-M’Rabet, S., Legal, L., Williams, T., and Henaut, Y. 2008. Chemically mediated burrow recognition in the Mexican tarantula Brachypelma vagans female. Naturwissenschaften 95:1189–1193.

    Article  PubMed  CAS  Google Scholar 

  • Elgar, M. A. and Allan, R. A. 2004. Predatory spider mimics acquire colony-specific cuticular hydrocarbons from their ant model prey. Naturwissenschaften 91:143–147.

    Article  PubMed  CAS  Google Scholar 

  • Elgar, M. A. and Allan, R. A. 2006. Chemical mimicry of the ant Oecophylla smaragdina by the myrmecophilous spider Cosmophasis bitaeniata: Is it colony-specific? J. Ethol. 24:239–246.

    Article  Google Scholar 

  • Enders, F. 1975. Airborne pheromone probable in orb web spider Argiope aurantia (Araneidae). Br. Arachnol. Soc. News 13:5–6.

    Google Scholar 

  • Fernández-Montraveta, C. and Cuadrado, M. 2009. Mate attraction in a burrowing wolf-spider (Araneae, Lycosidae) is not olfactory mediated. Ethology 115:375–383.

    Article  Google Scholar 

  • Francke, W. and Schulz, S. 2010. Pheromones of Terrestrial Invertebrates, pp. 153–223, in L. N. Mander and H. Liu (eds.), Comprehensive Natural Products II. Elsevier, Oxford.

    Chapter  Google Scholar 

  • Gaskett, A. C. 2007. Spider sex pheromones: Emission, reception, structures, and functions. Biol. Rev. 82:26–48.

    Article  Google Scholar 

  • Gaskett, A. C., Herberstein, M. E., Downes, B. J., and Elgar, M. A. 2004. Changes in male mate choice in a sexually cannibalistic orb-web spider (Araneae: Araneidae). Behaviour 141:1197–1210.

    Article  Google Scholar 

  • Gemeno, C., Yeargan, K. V., and Haynes, K. F. 2000. Aggressive chemical mimicry by the bolas spider Mastophora hutchinsoni: Identification and quantification of a major prey’s sex pheromone components in the spider’s volatile emissions. J. Chem. Ecol. 26:1235–1243.

    Article  CAS  Google Scholar 

  • Grinsted, L., Bilde, T., and D’Ettorre, P. 2011. Cuticular hydrocarbons as potential kin recognition cues in a subsocial spider. Behav. Ecol. 22:1187–1194.

    Article  Google Scholar 

  • Haynes, K. F., Yeargan, K. V., Millar, J. G., and Chastan, B. B. 1996. Identification of sex pheromone of Tetanolita myenesalis (Lepidoptera: Noctuidae), a prey species of bolas spiders, Mastophora hutchinsoni. J. Chem. Ecol. 22:75–89.

    Article  CAS  Google Scholar 

  • Haynes, K. F., Gemeno, C., Yeargan, K. V., Millar, J. G., and Johnson, K. M. 2002. Aggressive chemical mimicry of moth pheromones by a bolas spider: How does this specialist predator attract more than one species of prey? Chemoecology 12:99–105.

    Article  CAS  Google Scholar 

  • Huber, B. A. 2005. Sexual selection research on spiders: Progress and biases. Biol. Rev. 80:363–385.

    Article  PubMed  Google Scholar 

  • Jerhot, E., Stoltz, J. A., Andrade, M. C. B., and Schulz, S. 2010. Acylated serine derivatives: A unique class of arthropod pheromones of the Australian redback spider, Latrodectus hasselti. Angew. Chem. Int. Ed. 49:2037–2040.

    Article  CAS  Google Scholar 

  • Johnson, A., Revis, O., and Johnson, J. C. 2011. Chemical prey cues influence the urban microhabitat preferences of Western black widow spiders, Latrodectus hesperus. J. Arachnol. 39:449–453.

    Article  Google Scholar 

  • Kasumovic, M. M. and Andrade, M. C. B. 2004. Discrimination of airborne pheromones by mate-searching male western black widow spiders (Latrodectus hesperus): Species- and population-specific responses. Can. J. Zool. 82:1027–1034.

    Google Scholar 

  • Koh, T. H., Seah, W. K., Yap, L.-M. Y. L., and Li, D. 2009. Pheromone-based female mate choice and its effect on reproductive investment in a spitting spider. Behav. Ecol. Sociobiol. 63:923–930.

    Article  Google Scholar 

  • Leonard, A. S. and Morse, D. H. 2006. Line-following preferences of male crab spiders, Misumena vatia. Anim. Behav. 71:717–724.

    Article  Google Scholar 

  • Löfstedt, C., Herrebout, W. M., and Du, J.-W. 1986. Evolution of the ermine moth pheromone tetradecyl acetate. Nature 323:621–623.

    Article  Google Scholar 

  • Morgan, E. D. 2010. Biosynthesis in Insects, 2nd ed. Royal Society of Chemistry, Cambridge.

    Google Scholar 

  • Nawrath, T., Gerth, K., Müller, R., and Schulz, S. 2010. Volatile methyl esters of medium chain length from the bacterium Chitinophaga Fx7914. Chem. Biodivers. 7:2228–2253.

    Article  PubMed  CAS  Google Scholar 

  • Olsen, C. A., Kristensen, A. S., and Strømgaard, K. 2011. Small molecules from spiders used as chemical probes. Angew. Chem. Int. Ed. 50:11296–11311.

    Article  CAS  Google Scholar 

  • Papke, M., Schulz, S., Tichy, H., Gingl, E., and Ehn, R. 2000. Identification of a new sex pheromone from the silk dragline of the tropical wandering spider Cupiennius salei. Angew. Chem. Int. Ed. 39:4339–4341.

    Article  CAS  Google Scholar 

  • Papke, M. D., Riechert, S. E., and Schulz, S. 2001. An airborne female pheromone associated with male attraction and courtship in a desert spider. Anim. Behav. 61:877–886.

    Article  Google Scholar 

  • Perampaladas, K., Stoltz, J. A., and Andrade, M. C. B. 2008. Mated redback spider females re-advertise receptivity months after mating. Ethology 114:589–598.

    Article  Google Scholar 

  • Persons, M. H., Walker, S. E., Rypstra, A. L., and Marshall, S. D. 2001. Wolf spider predator avoidance tactics and survival in the presence of diet-associated predator cues (Araneae: Lycosidae). Anim. Behav. 61:43–51.

    Article  PubMed  Google Scholar 

  • Platnick, N. I. 2012. The world spider catalog, version 12.5. <http://research.amnh.org/iz/spiders/catalog/intro1.html>.

  • Podebrad, F., Heil, M., Scharrer, A., Feldmer, S., Schulte-Mäter, O., Mosandl, A., Sewell, A. C., and Böhles, H. J. 1999. Analysis of methylcitric acid by enantioselective multidimensional gas chromatography–mass spectrometry. J. High Resolut. Chromatogr. 22:604–608.

    Article  CAS  Google Scholar 

  • Prouvost, O., Trabalon, M., Papke, M., and Schulz, S. 1999. Contact sex signals on web and cuticle of Tegenaria atrica (Araneae, Agenelidae). Arch. Insect Biochem. Physiol. 40:194–202.

    Article  CAS  Google Scholar 

  • Prpic, N.-M., Schoppmeier, M., and Damen, W. G. M. 2008. The American wandering spider Cupiennius salei. Cold Spring Harb. Protoc.. doi:10.1101/pdb.emo103.

  • Pruitt, J. N. and Riechert, S. E. 2009. Male mating preference is associated with risk of pre-copulatory cannibalism in a socially polymorphic spider. Behav. Ecol. Sociobiol. 63:1573–1580.

    Article  Google Scholar 

  • Reddy, C. S. K., Ghai, R., and Rashmi Kalia, V. C. 2003. Polyhydroxyalkanoates: An overview. Bioresour. Technol. 87:137–146.

    Article  PubMed  CAS  Google Scholar 

  • Riechert, S. E. and Singer, F. D. 1995. Investigation of potential male mate choice in a monogamous spider. Anim. Behav. 49:719–723.

    Google Scholar 

  • Roberts, J. A. and Uetz, G. W. 2004a. Chemical signaling in a wolf spider: A test of ethospecies discrimination. J. Chem. Ecol. 30:1271–1284.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, J. A. and Uetz, G. W. 2004b. Species-specificity of chemical signals: Silk source affects discrimination in a wolf spider (Araneae: Lycosidae). J. Insect Behav. 17:477–491.

    Article  Google Scholar 

  • Roberts, J. A. and Uetz, G. W. 2005. Information content of female chemical signals in the wolf spider, Schizocosa ocreata: Male discrimination of reproductive state and receptivity. Anim. Behav. 70:217–223.

    Article  Google Scholar 

  • Ross, K. and Smith, R. L. 1979. Aspects of the courtship behavior of the black widow spider Latrodectus hesperus (Araneae: Theridiidae), with evidence for the existence of a contact sex pheromone. J. Arachnol. 7:69–77.

    Google Scholar 

  • Roth, V. D., Ubick, D., and Dupérré, N. 2005. Spiders of North America: An identification manual. American Arachnological Society, Poughkeepsie and N.Y.. 377p.

    Google Scholar 

  • Rypstra, A. L., Wieg, C., Walker, S. E., and Persons, M. H. 2003. Mutual mate assessment in wolf spiders: Differences in the cues used by males and females. Ethology 109:315–325.

    Article  Google Scholar 

  • Schiestl, F. P., Ayasse, M., Paulus, H. F., Löfstedt, C., Hansson, B. S., Ibarra, F., and Francke, W. 2000. Sex pheromone mimicry in the early spider orchid (Ophrys sphegodes): patterns of hydrocarbons as the key mechanism for pollination by sexual deception. J. Comp. Physiol. A. 186:567–574.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, S. 1997. The chemistry of spider toxins and spider silk. Angew. Chem. Int. Ed. Engl. 36:314–326.

    Article  CAS  Google Scholar 

  • Schulz, S. 1999. Structural diversity of surface lipids from spiders, pp. 1–7, in U. Diederichsen, T. K. Lindhorst, B. Westermann, and L. A. Wessjohann (eds.), Bioorganic Chemistry - Highlights and New Aspects. Wiley-VCH, Weinheim.

    Google Scholar 

  • Schulz, S. 2001. Composition of the silk lipids of the spider Nephila clavipes. Lipids 36:637–647.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, S. 2004. Semiochemistry of spiders pp, pp. 110–150, in R. T. Cardé and J. G. Millar (eds.), Advances in Chemical Ecology. Cambridge University Press, Cambridge.

    Chapter  Google Scholar 

  • Schulz, S. and Toft, S. 1993a. Branched long chain alkyl methyl ethers: A new class of lipids from spider silk. Tetrahedron 49:6805–6820.

    Article  CAS  Google Scholar 

  • Schulz, S. and Toft, S. 1993b. Identification of a sex pheromone from a spider. Science 260:1635–1637.

    Article  PubMed  CAS  Google Scholar 

  • Singer, F., Riechert, S. E., Xu, H. F., Morris, A. W., Becker, E., Hale, J. A., and Noureddine, M. A. 2000. Analysis of courtship success in the funnel-web spider Agelenopsis aperta. Behaviour 137:93–117.

    Article  Google Scholar 

  • Stoltz, J. A., McNeil, J. N., and Andrade, M. C. B. 2007. Males assess chemical signals to discriminate just-mated females from virgins in redback spiders. Anim. Behav. 74:1669–1674.

    Article  Google Scholar 

  • Tichy, H., Gingl, E., Ehn, R., Papke, M., and Schulz, S. 2001. Female sex pheromone of a wandering spider: Identification and sensory reception. J. Comp. Physiol. A. 187:75–78.

    Article  PubMed  CAS  Google Scholar 

  • Trabalon, M. 2011. Agonistic interactions, cuticular and hemolymphatic lipid variations during the foraging period in spider females Brachypelma albopilosa (Theraphosidae). J. Insect Physiol. 57:735–743.

    Article  PubMed  CAS  Google Scholar 

  • Trabalon, M. and Assi-Bessekon, D. 2008. Effects of web chemical signatures on intraspecific recognition in a subsocial spider, Coelotes terrestris (Araneae). Anim. Behav. 76:1571–1578.

    Article  Google Scholar 

  • Trabalon, M. and Bagnères, A. G. 2010. Contact recognition pheromones in spiders and scorpions, pp. 344-374 in G. Blomquist and A. Bagnéres (eds.), Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology, Cambridge University Press.

  • Trabalon, M., Bagnéres, A. G., and Roland, C. 1997. Contact sex signals in two sympatric spider species, Tegenaria domestica and Tegenaria pagana. J. Chem. Ecol. 23:747–758.

    Article  CAS  Google Scholar 

  • Trabalon, M., Niogret, J., and Legrand-Frossi, C. 2005. Effect of 20-hydroxyecdysone on cannibalism, sexual behavior, and contact sex pheromone in the solitary female spider, Tegenaria atrica. Gen. Comp. Endocrinol. 144:60–66.

    Article  PubMed  CAS  Google Scholar 

  • Uhl, G. and Elias, D. O. 2011. Communication, pp. 127–188, in M. E. Herberstein (ed.), Spider behaviour. Cambridge University Press, Cambridge.

  • van de Veire, M. and Dirinck, P. 1986. Sex pheromone components of the cabbage armyworm, Mamestra brassicae: Isolation, identification and field experiments. Entomol. Exp. Appl. 41:153–155.

    Article  Google Scholar 

  • von Beeren, C., Schulz, S., Hashim, R., and Witte, V. 2011. Acquisition of chemical recognition cues facilitates integration into ant societies. BMC Ecol. 11:30.

    Google Scholar 

  • Watson, P. J. 1986. Transmission of a female sex pheromone thwarted by males in the spider Linyphia litigosa (Linyphiidae). Science 233:219–221.

    Article  PubMed  CAS  Google Scholar 

  • Witte, V., Foitzik, S., Hashim, R., Maschwitz, U., and Schulz, S. 2009. Fine tuning of social integration by two myrmecophiles of the ponerine army ant, Leptogenys distinguenda. J. Chem. Ecol. 35:355–367.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, Y.-H., Zhang, J.-X., and Li, S.-Q. 2009. A two-component female-produced pheromone of the spider Pholcus beijingensis. J. Chem. Ecol. 35:769–778.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, Y.-H., Zhang, J.-X., and Li, S.-Q. 2010. Male-specific (Z)-9-tricosene stimulates female mating behaviour in the spider Pholcus beijingensis. Proc. R. Soc. B Biol. Sci. 277:3009–3018.

    Article  CAS  Google Scholar 

  • Yatsynin, V. G., Rubanova, E. V., and Okhrimenko, N. V. 1996. Identification of female-produced sex pheromones and their geographical differences in pheromone gland extract composition from click beetles (Col., Elateridae). J. Appl. Entomol. 120:463–466.

    Article  Google Scholar 

  • Zhu, J. and Haynes, K. F. 2004. Sex pheromone components of the bronzed cutworm, Nephelodes minians, a prey species of a bolas spider, Mastophora hutchinsoni. J. Chem. Ecol. 30:2047–2056.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Prof. Gustavo Hormiga, Washington, USA, for his advice on spider phylogeny and the suggestion for the source of Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schulz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulz, S. Spider Pheromones – a Structural Perspective. J Chem Ecol 39, 1–14 (2013). https://doi.org/10.1007/s10886-012-0231-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-012-0231-6

Keywords

Navigation