Skip to main content

Species-Specific Effects of Herbivory on the Oviposition Behavior of the Moth Manduca sexta

Abstract

In Southwestern USA, the jimsonweed Datura wrightii and the nocturnal sphinx moth Manduca sexta form a pollinator-plant and herbivore-plant association. While certain plant volatile organic compounds (VOCs) attract moths for oviposition, it is likely that other host-derived olfactory cues, such as herbivore-induced VOCs, repel moths for oviposition. Here, we studied the oviposition preference of female M. sexta towards intact and damaged host plants of three species: D. wrightii, D. discolor (a less preferred feeding resource but also used by females for oviposition), and Solanum lycopersicum–tomato–(used by moths as an oviposition resource only). Damage was inflicted to the plants either by larval feeding or artificial damage. Mated females were exposed to an intact plant and a damaged plant and allowed to lay eggs for 10 min. Oviposition preferences of females were highly heterogeneous in all cases, but a larger proportion of moths laid significantly fewer eggs on feeding-damaged and artificially damaged plants of S. lycopersicum. Many females also avoided feeding-damaged D. discolor and D. wrightii plants induced by treatment with methyl jasmonate. Chemical analyses showed a significant increase in the total amount of VOCs released by vegetative tissues of feeding-damaged plants, as well as species-specific increases in emission of certain VOCs. In particular, feeding-damaged S. lycopersicum plants emitted (-)-linalool, an odorant that repels moths for oviposition. Finally, the emission of D. wrightii floral VOCs, which are important in mediating feeding by adult moths (and hence pollination), did not change in plants damaged by larval feeding. We propose that the observed differential effects of herbivory on oviposition choice are due to different characteristics (i.e., mutually beneficial or parasitic) of the insect–plant interaction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Adler, L. S. and Bronstein, J. L. 2004. Attracting antagonists: Does floral nectar increase leaf herbivory? Ecology 85:1526–1529.

    Google Scholar 

  • Adler, L. S., Wink, M. D., and Lentz, A. J. 2006. Leaf herbivory and nutrients increase nectar alkaloids. Ecol Lett 9:960–967.

    PubMed  Article  Google Scholar 

  • Alarcon, R., Davidowitz, G., and Bronstein, J. 2008. Nectar usage in a southern Arizona hawkmoth community. Ecol. Entomol. 33:503–509.

    Article  Google Scholar 

  • Almohamad, R., Verheggen, F. J., Francis, F., Lognay, G., and Haubruge, E. 2010. Assessment of oviposition site quality by aphidophagous hoverflies: Reaction to conspecific larvae. Anim Behav 79:589–594.

    Article  Google Scholar 

  • Anderson, P. and Alborn, H. 1999. Effects on oviposition behaviour and larval development of Spodoptera littoralis by herbivore-induced changes in cotton plants. Entomol. Exp. Appl. 92:45–51.

    Google Scholar 

  • Anderson, P., Hilker, M., Hansson, B. S., Bombosch, S., Klein, B., and Schildknecht, H. 1992. Oviposition deterring components in larval frass of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae): A behavioral and electrophysiological evaluation. J. Insect Physiol. 39:129–137.

    Google Scholar 

  • Arimura, G., Ozawa, R., Shimoda, T., Nishioka, T., Boland, W., and Takabayashi, J. 2000. Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512–515.

    PubMed  Article  CAS  Google Scholar 

  • Baldwin, I. T. and Preston, C. A. 1999. The eco-physiological complexity of plant responses to insect herbivores. Planta 208:137–145.

    Article  CAS  Google Scholar 

  • Baldwin, I. T., Kessler, A., and Halitschke, R. 2002. Volatile signaling in plant-plant-herbivore interactions: What is real? Curr. Opin. Plant Biol. 5:351–354.

    PubMed  Article  CAS  Google Scholar 

  • Bell, R. A. and Joachim, F. A. 1976. Techniques for rearing laboratory colonies of tobacco hornworms and pink bollworms. Ann. Entomol. Soc. Am. 69:365–373.

    Google Scholar 

  • Benjamini, Y. and Hochberg, Y. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57:289–300.

    Google Scholar 

  • Bronstein, J. L., Huxman, T., Horvath, B., Farabee, M., and Davidowitz, G. 2009. Reproductive biology of Datura wrightii: The benefits of a herbivorous pollinator. Ann. Bot. London 103:1435–1443.

    Article  Google Scholar 

  • Bruin, J., Dicke, M., and Sabelis, M. 1992. Plants are better protected against spider-mites after exposure to volatiles from infested conspecifics. Experientia 48:525–529.

    Article  CAS  Google Scholar 

  • de Moraes, C. M., Lewis, W. J., Pare, P. W., Alborn, H. T., and Tumlinson, J. H. 1998. Hervibore-infested plants selectively attract parasitoids. Nature 393:570–573.

    Article  Google Scholar 

  • de Moraes, C. M., Mescher, M. C., and Tumlinson, J. H. 2001. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580.

    PubMed  Article  Google Scholar 

  • del Campo, M. L., Miles, C. I., Schroeder, F. C., Mueller, C., Booker, R., and Renwick, J. A. 2001. Host recognition by the tobacco hornworm is mediated by a host plant compound. Nature 411:186–189.

    PubMed  Article  Google Scholar 

  • Delvas, N., Bauce, E., Labbe, C., Ollevier, T., and Belanger, R. 2011. Phenolic compounds that confer resistance to spruce budworm. Entomol. Exper. Appl. 141:35–44.

    Article  CAS  Google Scholar 

  • Dicke, M. and van Loon, J. J. A. 2000. Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol. Exp. Appl. 97:237–249.

    Article  CAS  Google Scholar 

  • Dicke, M., van Beek, T. A., Posthumus, M. A., Ben Dom, N., van Bokhoven, H., and de Groot, A. 1990. Isolation and identification of volatile kairomone that affects acarine predator-prey interactions involvement of host plant in its production. J Chem Ecol 16:381–396.

    Article  CAS  Google Scholar 

  • Effmert, U., Dinse, C., and Piechulla, B. 2008. Influence of green leaf herbivory by Manduca sexta on floral volatile emission by Nicotiana suaveolens. Plant Physiol 146:1996–2007.

    PubMed  Article  CAS  Google Scholar 

  • Geervliet, J. B. F., Posthumus, M. A., Vet, L. E. M., and Dicke, M. 1997. Comparative analysis of headspace volatiles from different caterpillar-infested or uninfested food plants of Pieris species. J Chem Ecol 23:2935–2954.

    Article  CAS  Google Scholar 

  • Halitschke, R., Kealer, A., Kahl, J., Lorenz, A., and Baldwin, I. T. 2000. Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuata. Oecologia 124:408–417.

    Article  Google Scholar 

  • Hare, J. 2007. Variation in herbivore and methyl jasmonate-induced volatiles among genetic lines of Datura wrightii. J Chem Ecol 33:2028–2043.

    PubMed  Article  CAS  Google Scholar 

  • Hare, J. D. and Walling, L. L. 2006. Constitutive and jasmonate-inducible traits of Datura wrightii. J Chem Ecol 32:29–47.

    PubMed  Article  CAS  Google Scholar 

  • Holopainen, J. K. and Gershenzon, J. 2010. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci 15:176–184.

    PubMed  Article  CAS  Google Scholar 

  • Kant, M. R., Ament, K., Sabelis, M. W., Haring, M. A., and Schuurink, R. C. 2004. Differential timing of spider mite-induced direct and indirect defenses in tomato plants. Plant Physiol 135:483–495.

    PubMed  Article  CAS  Google Scholar 

  • Karban, R. 2011. The ecology and evolution of induced resistance against herbivores. Funct Ecol 25:339–347.

    Article  Google Scholar 

  • Karban, R. and Baldwin, I. T. 1997. Induced Responses to Herbivory. Chicago University Press, Chicago. 330 p.

    Google Scholar 

  • Kessler, A. and Baldwin, I. T. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144.

    PubMed  Article  CAS  Google Scholar 

  • Kessler, A. and Halitschke, R. 2009. Testing the potential for conflicting selection on floral chemical traits by pollinators and herbivores: Predictions and case study. Funct Ecol 23:901–912.

    Article  Google Scholar 

  • Landolt, P. J. 1993. Effects of host plant leaf damage on cabbage looper moth attraction and oviposition. Entomol. Exp. Appl. 67:79–85.

    Article  Google Scholar 

  • Loughrin, J. H., Manukian, A., Heath, R. R., Turlings, T. C. J., and Tumlinson, J. H. 1994. Diurnal cycle of emission of induced volatile terpenoids by hervibore-injured cotton plants. Proc Natl Acad Sci U S A 91:11836–11840.

    PubMed  Article  CAS  Google Scholar 

  • Madden, A. H. and Chamberlin, F. S. 1945. Biology of the tobacco hornworm in the southern cigar tobacco district. US Dep. Agric. Tech. Bull. 896.

  • McCall, A. C. and Karban, R. 2006. Induced defense in Nicotiana attenuata (Solanaceae) fruit and flowers. Oecologia 146:566–571.

    PubMed  Article  Google Scholar 

  • Mechaber, W. and Hildebrand, J. G. 2000. Novel, non-solanaceous host-plant record for Manduca sexta (Lepidoptera: Sphingidae) in the southwestern United States. Ann. Entomol. Soc. Am. 93:447–451.

    Article  Google Scholar 

  • Mithöfer, A., Wanner, G., and Boland, W. 2005. Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol 137:1160–1168.

    PubMed  Article  Google Scholar 

  • Paré, P. W. and Tumlinson, J. H. 1997. Induced synthesis of plant volatiles. Nature 385:30–31.

    Article  Google Scholar 

  • Paré, P. W. and Tumlinson, J. H. 1999. Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–331.

    PubMed  Article  Google Scholar 

  • Ping, L. Y., Shen, Y. B., and Jin, Y. J. 2001a. Volatiles released in succession from artificially damaged ashleaf maple leaves. Funct Plant Biol 28:513–517.

    Article  CAS  Google Scholar 

  • Ping, L. Y., Shen, Y. B., Jin, Y. J., and Hao, J. H. 2001b. Leaf volatiles induced by mechanical damage from diverse taxonomic tree species. J. Integr. Plant Biol. 43:261–266.

    CAS  Google Scholar 

  • Raguso, R. R., Henzel, C., Buchmann, S. L., and Nabhan, G. P. 2003. Trumpet flowers of the sonoran desert: Floral biology of Peniocereus cacti and sacred Datura. Int J Plant Sci 164:877–892.

    Article  CAS  Google Scholar 

  • Ramaswamy, S. B. 1988a. Host finding and feeding in adult phytophagous insects. J. Insect Physiol. 34:151–168.

    Article  Google Scholar 

  • Ramaswamy, S. B. 1988b. Host finding by moths: Sensory modalities and behavior. J. Insect Physiol. 34:235–249.

    Article  Google Scholar 

  • Reisenman, C. E., Riffell, J. A., Bernays, E. A., and Hildebrand, J. G. 2010. Antagonistic effects of floral scent in an insect-plant interaction. Proc R Soc London, Ser B 277:2371.

    Article  CAS  Google Scholar 

  • Riffell, J. A., Alarcon, L., Abrell, J. L., Bronstein, J., Davidowitz, G., and Hildebrand, J. G. 2008. Behavioral consequences of innate preferences and olfactory learning in hawkmoth-flower interactions. Proc Natl Acad Sci U S A 105:3404–3409.

    PubMed  Article  CAS  Google Scholar 

  • Riffell, J. A., Lei, H., Christensen, T. A., and Hildebrand, J. G. 2009. Characterization and coding of behaviorally significant odor mixtures. Curr Biol 19:335–340.

    PubMed  Article  CAS  Google Scholar 

  • Rojas, J. C. 1999. Influence of host plant damage on the host-finding behavior of Mamestra brassicae (Lepidoptera: Noctuidae). Environ. Entomol. 28:588–593.

    Google Scholar 

  • Sanes, J. R. and Hildebrand, J. G. 1976. Structure and development of antennae in a moth, Manduca sexta. Dev Biol 51:282–299.

    Article  Google Scholar 

  • Sasaki, M. and Riddiford, L. M. 1984. Regulation of reproductive behaviour and egg maturation in the tobacco hawk moth, Manduca sexta. Physiol Entomol 9:315–327.

    Article  Google Scholar 

  • Schittko, U., Preston, C. A., and Baldwin, I. T. 2000. Eating the evidence? Manduca sexta larvae can not disrupt specific jasmonate induction in Nicotiana attenuata by rapid consumption. Planta 210:343–346.

    PubMed  Article  CAS  Google Scholar 

  • Schnee, C., Kollner, T. G., Held, M., Turlings, T. C. J., Gershenzon, J., and Degenhardt, J. 2006. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci U S A 103:1129–1134.

    PubMed  Article  CAS  Google Scholar 

  • Sokal, R. R. and Rohlf, F. J. 1995. Biometry: The Principles and Practices of Statistics in Biological Research. W. H. Freeman and Company, New York. 937 p.

    Google Scholar 

  • Sparks, M. R. 1969. A surrogate leaf for oviposition by the tobacco hornworm. J. Econ. Entomol. 63:537–540.

    Google Scholar 

  • Sparks, M. R. 1973. Physical and chemical stimuli affecting oviposition preference of Manduca sexta (Lepidoptera: Sphingidae). Ann. Entomol. Soc. Am. 66:571–573.

    Google Scholar 

  • Tichenor, L. H. and Seigler, D. S. 1980. Electroantennogram and oviposition responses of Manduca sexta to volatile components of tobacco and tomato. J. Insect Physiol. 26:309–314.

    Article  CAS  Google Scholar 

  • Turlings, T. C. J. and Tumlinson, J. H. 1992. Systemic release of chemical signals by hervibore-injured corn. Proc Natl Acad Sci U S A 89:8399–8402.

    PubMed  Article  CAS  Google Scholar 

  • Turlings, T. C. J., Loughrin, J. H., McCall, P. J., Röse, U. S. R., Lewis, W. J., and Tumlinson, J. H. 1995. How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc Natl Acad Sci U S A 92:4169–4174.

    PubMed  Article  CAS  Google Scholar 

  • Turlings, T. C. J., Bernasconi, M. L., Bertossa, R., Bigler, F., Caloz, G., and Dorn, S. 1998a. The induction of volatile emissions in maize by three herbivore species with different feeding habits: Possible consequences for their natural enemies. Biol Control 11:122–129.

    Article  Google Scholar 

  • Turlings, T. C. J., Lengwiler, U. B., Bernasconi, M. L., and Wechsler, D. 1998b. Timing of induced volatile emissions in maize seedlings. Planta 207:146–152.

    Article  CAS  Google Scholar 

  • van Schie, C. C., Haring, M. A., and Schuurink, R. C. 2007. Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Mol Biol 64:251–263.

    PubMed  Article  CAS  Google Scholar 

  • Vercammen, J., Pham-Tuan, H., and Sandra, P. 2001. Automated dynamic sampling system for the on-line monitoring of biogenic emissions from living organisms. J. Chromatogr. A 930:39–51.

    PubMed  Article  CAS  Google Scholar 

  • Xu, H., Li, G., Liu, M., and Xing, G. 2006. Oviposition deterrents in larval frass of the cotton boll worm, Helicoverpa armigera (Lepidoptera: Noctuidae): Chemical identification and electroantennography analysis. J. Insect Physiol. 52:320–326.

    PubMed  Article  CAS  Google Scholar 

  • Yamamoto, R. T. and Fraenkel, G. S. 1960. The specificity of the tobacco hornworm, Protoparce sexta, to solanaceous plants. Ann. Entomol. Soc. Am. 53:503–507.

    Google Scholar 

  • Zar, J. H. 1999. Biostatistical Analysis. Prentice-Hall, Upper Saddle River, New Jersey. 663 p.

    Google Scholar 

Download references

Acknowledgments

Supported by a National Science Fundation-BIO IOS 0822709 grant to C.E.R. and J.A.R. The authors thank John G. Hildebrand for support in all aspects of this work, Abreeza Zeeger for help rearing the plants, and Suzzane Mackzum and Margaret Marez for rearing M. sexta. The authors thank two anonymous reviewers and the Editor for helpful comments and suggestions that greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina E. Reisenman.

Additional information

Carolina E. Reisenman and Jeffrey A. Riffell equal contribution

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reisenman, C.E., Riffell, J.A., Duffy, K. et al. Species-Specific Effects of Herbivory on the Oviposition Behavior of the Moth Manduca sexta . J Chem Ecol 39, 76–89 (2013). https://doi.org/10.1007/s10886-012-0228-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-012-0228-1

Keywords

  • Herbivory
  • Manduca sexta
  • Oviposition
  • Solanaceae
  • GC-MS
  • Plant volatiles