Journal of Chemical Ecology

, Volume 39, Issue 1, pp 129–139 | Cite as

Microbial Symbionts Shape the Sterol Profile of the Xylem-Feeding Woodwasp, Sirex noctilio

  • Brian M. Thompson
  • Robert J. Grebenok
  • Spencer T. Behmer
  • Daniel S. Gruner
Article

Abstract

The symbiotic fungus Amylostereum areolatum is essential for growth and development of larvae of the invasive woodwasp, Sirex noctilio. In the nutrient poor xylem of pine trees, upon which Sirex feeds, it is unknown whether Amylostereum facilitates survival directly through consumption (mycetophagy) and/or indirectly through digestion of recalcitrant plant polymers (external rumen hypothesis). We tested these alternative hypotheses for Amylostereum involvement in Sirex foraging using the innate dependency of all insects on dietary sources of sterol and the unique sterols indicative of fungi and plants. We tested alternative hypotheses by using GC-MS to quantify concentrations of free and bound sterol pools from multiple life-stages of Sirex, food sources, and waste products in red pine (Pinus resinosa). Cholesterol was the primary sterol found in all life-stages of Sirex. However, cholesterol was not found in significant quantities in either plant or fungal resources. Ergosterol was the most prevalent sterol in Amylostereum but was not detectable in either wood or insect tissue (<0.001 μg/g). Phytosterols were ubiquitous in both pine xylem and Sirex. Therefore, dealkylation of phytosterols (sitosterol and campesterol) is the most likely pathway to meet dietary demand for cholesterol in Sirex. Ergosterol concentrations from fungal-infested wood demonstrated low fungal biomass, which suggests mycetophagy is not the primary source of sterol or bulk nutrition for Sirex. Our findings suggest there is a potentially greater importance for fungal enzymes, including the external digestion of recalcitrant plant polymers (e.g., lignin and cellulose), shaping this insect-fungal symbiosis.

Keywords

Sirex noctilio Amylostereum Sterol metabolism External rumen hypothesis Invasive symbiosis Mycetophagy 

References

  1. Aanen, D. K. 2002. The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc. Natl. Acad. Sci. U. S. A. 99:14887–14892.PubMedCrossRefGoogle Scholar
  2. Adams, A. S., Jordan, M. S., Adams, S. M., Suen, G., Goodwin, L. A., Davenport, K. W., Currie, C. R., and Raffa, K. F. 2011. Cellulose-degrading bacteria associated with the invasive woodwasp Sirex noctilio. ISME J. 5:1323–1331.PubMedCrossRefGoogle Scholar
  3. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.PubMedGoogle Scholar
  4. Batra, L. R. 1966. Ambrosia fungi: Extent of specificity to ambrosia beetles. Science 153:193–195.PubMedCrossRefGoogle Scholar
  5. Behmer, S. and Grebenok, R. 1998. Impact of dietary sterols on life-history traits of a caterpillar. Physiol. Entomol. 23:165–175.CrossRefGoogle Scholar
  6. Behmer, S. T., and Nes, D. 2003. Insect Sterol Nutrition and Physiology: A Global Overview, pp. 1–72, Advances in Insect Physiology. Elsevier.Google Scholar
  7. Behmer, S. T., Elias, D. O., and Grebenok, R. J. 1999. Phytosterol metabolism and absorption in the generalist grasshopper, Schistocerca americana (Orthoptera: Acrididae). Arch. Insect Biochem. Physiol. 42:13–25.PubMedCrossRefGoogle Scholar
  8. Bentz, B. J. and Six, D. L. 2006. Ergosterol content of fungi associated with Dendroctonus ponderosae and Dendroctonus rufipennis (Coleoptera: Curculionidae, Scolytinae). Ann. Entomol. Soc. Am. 99:189–194.CrossRefGoogle Scholar
  9. Blanchette, R. A. 1991. Delignification by wood-decay fungi. Annu. Rev. Phytopathol. 29:381–403.CrossRefGoogle Scholar
  10. Bordeaux, J. M. 2008. Characterization of growth conditions for production of a laccase-like phenoloxidase by Amylostereum areolatum, a fungal pathogen of pines and other conifers. Masters thesis. University of Georgia.Google Scholar
  11. Böröczky, K., Crook, D. J., Jones, T. H., Kenny, J. C., Zylstra, K. E., Mastro, V. C., and Tumlinson, J. H. 2009. Monoalkenes as contact sex pheromone components of the woodwasp Sirex noctilio. J. Chem. Ecol. 35:1202–1211.PubMedCrossRefGoogle Scholar
  12. Carnegie, A. J., Matsuki, M., Haugen, D. A., Hurley, B. P., Ahumada, R., Klasmer, P., Sun, J., and Iede, E. T. 2006. Predicting the potential distribution of Sirex noctilio (Hymenoptera: Siricidae), a significant exotic pest of Pinus plantations. Ann. For. Sci. 63:10.CrossRefGoogle Scholar
  13. Cartwright, K. S. G. 1938. A Further note on fungus association in the Siricidae. Ann. Appl. Biol. 25:430–432.CrossRefGoogle Scholar
  14. Ciufo, L. F., Murray, P. A., Thompson, A., Rigden, D. J., and Rees, H. H. 2011. Characterisation of a desmosterol reductase involved in phytosterol dealkylation in the silkworm, Bombyx mori. PLoS One 6:e21316.PubMedCrossRefGoogle Scholar
  15. Clayton, R. B. 1964. The utilization of sterols by insects. J. Lipid Res. 5:3–19.Google Scholar
  16. Cooperband, M. F., Böröczky, K., Hartness, A., Jones, T. H., Zylstra, K. E., Tumlinson, J. H., and Mastro, V. C. 2012. Male-produced pheromone in the European woodwasp, Sirex noctilio. J. Chem. Ecol. 38:52–62.PubMedCrossRefGoogle Scholar
  17. Coutts, M. P. 1969. The mechanism of pathogenicity of Sirex noctilio on Pinus radiata.: Effects of the symbiotic fungus Amylostereum spp. (Thelophoraceae). Aust. J. Biol. Sci. 22:915–924.Google Scholar
  18. Currie, C. R., Wong, B., Stuart, A. E., Schultz, T. R., Rehner, S. A., Mueller, U. G., Sung, G.-H., Spatafora, J. W., and Straus, N. A. 2003. Ancient tripartite coevolution in the Attine ant-microbe symbiosis. Science 299:386–388.PubMedCrossRefGoogle Scholar
  19. Douglas, A. E. 2009. The microbial dimension in insect nutritional ecology. Funct. Ecol. 23:38–47.CrossRefGoogle Scholar
  20. Eliyahu, D., Nojima, S., Capracotta, S., Comins, D., and Schal, C. 2008. Identification of cuticular lipids eliciting interspecific courtship in the German cockroach, Blattella germanica. Naturwissenschaften 95:403–412.PubMedCrossRefGoogle Scholar
  21. Farrell, B. D., Sequeira, A. S., O’Meara, B. C., Normark, B. B., Chung, J. H., and Jordal, B. H. 2001. The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 55:2011–2027.PubMedGoogle Scholar
  22. Francke-Grosman, H. 1939. On the symbiosis of woodwasps (Siricinae) with fungi. Z. Angew. Entomol. 25:647–679.CrossRefGoogle Scholar
  23. Gardes, M. and Bruns, T. D. 1993. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol. Ecol. 2:113–118.PubMedCrossRefGoogle Scholar
  24. Geib, S. M., Filley, T. R., Hatcher, P. G., Hoover, K., Carlson, J. E., del Mar Jimenez-Gasco, M., Nakagawa-Izumi, A., Sleighter, R. L., and Tien, M. 2008. Lignin degradation in wood-feeding insects. Proc. Natl. Acad. Sci. U. S. A. 105:12932–12937.PubMedCrossRefGoogle Scholar
  25. Gutiérrez, A., del Río, J. C., Martínez-Íñigo, M. J., Martínez, M. J., and Martínez, Á. T. 2002. Production of new unsaturated lipids during wood decay by ligninolytic Basidiomycetes. Appl. Environ. Microbiol. 68:1344–1350.PubMedCrossRefGoogle Scholar
  26. Hajek, A. E., Long, S., and Zylstra, K. E. 2009. Rearing Sirex noctilio from red pine in central New York, 19th U.S. Department of Agriculture interagency research forum on invasive species 2008. Annapolis, MD.Google Scholar
  27. Hartmann, M.-A. 1998. Plant sterols and the membrane environment. Trends Plant Sci. 3:170–175.CrossRefGoogle Scholar
  28. Heyer, J., Parker, B., Becker, D., Ruffino, J., Fordyce, A., Witt, M. D., Bedard, M., and Grebenok, R. 2004. Steroid profiles of transgenic tobacco expressing an Actinomyces 3-hydroxysteroid oxidase gene. Phytochemistry 65:2967–2976.PubMedCrossRefGoogle Scholar
  29. Ikekawa, N., Morisaki, M., and Fujimoto, Y. 1993. Sterol metabolism in insects: Dealkylation of phytosterol to cholesterol. Acc. Chem. Res. 26:139–146.CrossRefGoogle Scholar
  30. Jing, X., Vogel, H., Grebenok, R., Zhu-Salzman, K., and Behmer, S. 2012. Dietary sterol/steroids and the generalist caterpillar Helicoverpa zea: Physiology, biochemistry and midgut gene expression. Insect. Biochem. Mol. Biol. in press.Google Scholar
  31. Jonsell, M. and Nordlander, G. 2004. Host selection patterns in insects breeding in bracket fungi. Ecol. Entomol. 29:697–705.CrossRefGoogle Scholar
  32. Kaiser, W., Huguet, E., Casas, J., Commin, C., and Giron, D. 2010. Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proc. R. Soc. B 277:2311–2319.PubMedCrossRefGoogle Scholar
  33. Kaltenpoth, M., Goettler, W., Herzner, G., and Strohm, E. 2005. Symbiotic bacteria protect wasp larvae from fungal infestation. Curr. Biol. 15:475–479.PubMedCrossRefGoogle Scholar
  34. Kobune, S., Kajimura, H., Masuya, H., and Kubono, T. 2011. Symbiotic fungal flora in leaf galls induced by Illiciomyia yukawai (Diptera: Cecidomyiidae) and in its mycangia. Microb. Ecol. 63:619–627.PubMedCrossRefGoogle Scholar
  35. Kukor, J. J. and Martin, M. M. 1983. Acquisition of Digestive enzymes by Siricid woodwasps from their fungal symbiont. Science 220:1161–1163.PubMedCrossRefGoogle Scholar
  36. Leonowicz, A., Matuszewska, A., Luterek, J., Ziegenhagen, D., Wojtas-Wasilewska, M., Cho, N.-S., Hofrichter, M., and Rogalski, J. 1999. Biodegradation of lignin by white rot fungi. Fungal Genet. Biol. 27:175–185.PubMedCrossRefGoogle Scholar
  37. Leonowicz, A., Cho, N., Luterek, J., Wilkolazka, A., Wojtas-Wasilewska, M., Matuszewska, A., Hofrichter, M., Wesenberg, D., and Rogalski, J. 2001. Fungal laccase: Properties and activity on lignin. J. Basic Microbiol. 41:185–227.PubMedCrossRefGoogle Scholar
  38. Madden, J. L. 1977. Physiological reactions of Pinus radiata to attack by woodwasp, Sirex noctilio F. (Hymenoptera: Siricidae). Bull. Entomol. Res. 67:405–426.CrossRefGoogle Scholar
  39. Madden, J. 1981. Egg and larval development in the woodwasp, Sirex Noctilio F. Aust. J. Zool. 29:493–506.CrossRefGoogle Scholar
  40. Martin, M. M. 1979. Biochemical implications of insect mycophagy. Biol. Rev. Camb. Philos. Soc. 54:1–21.CrossRefGoogle Scholar
  41. Martin, M. M. 1987. Invertebrate-microbial interactions: Ingested fungal enzymes in arthropod biology. Cornell University Press, Ithaca, New York. 176 pp.Google Scholar
  42. Mattson, W. J. 1980. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11:119–161.CrossRefGoogle Scholar
  43. Maurer, P., Debieu, D., Leroux, P., Malosse, C., and Riba, G. 1992. Sterols and symbiosis in the leaf–cutting ant Acromyrmex octospinosus (Reich) (Hymenoptera, Formicidae: Attini). Arch. Insect Biochem. Physiol. 20:13–21.CrossRefGoogle Scholar
  44. Maxwell, D. E. 1955. The comparative internal larval anatomy of sawflies (Hymenoptera: Symphyta). Mem. Entomol. Soc. Can. 87:1–132.CrossRefGoogle Scholar
  45. McCutcheon, J. P., McDonald, B. R., and Moran, N. A. 2009. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc. Natl. Acad. Sci. U. S. A. 106:15394–15399.PubMedCrossRefGoogle Scholar
  46. Moran, N. A., Tran, P., and Gerardo, N. M. 2005. Symbiosis and insect diversification: An ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl. Environ. Microbiol. 71:8802–8810.PubMedCrossRefGoogle Scholar
  47. Mueller, U. G. and Gerardo, N. 2002. Fungus-farming insects: Multiple origins and diverse evolutionary histories. Proc. Natl. Acad. Sci. U. S. A. 99:15247–15249.PubMedCrossRefGoogle Scholar
  48. Nairn, C. J., Lennon, D. M., Wood-Jones, A., Nairn, A. V., and Dean, J. F. D. 2008. Carbohydrate-related genes and cell wall biosynthesis in vascular tissues of loblolly pine (Pinus taeda). Tree Physiol. 28:1099–1110.PubMedCrossRefGoogle Scholar
  49. Nasir, H. and Noda, H. 2003. Yeast-like symbiotes as a sterol source in anobiid beetles (Coleoptera, Anobiidae): Possible metabolic pathways from fungal sterols to 7–dehydrocholesterol. Arch. Insect Biochem. Physiol. 52:175–182.PubMedCrossRefGoogle Scholar
  50. Niku-Paavola, M. L., Raaska, L., and Itävaara, M. 1990. Detection of white-rot fungi by a non-toxic stain. Mycol. Res. 94:27–31.CrossRefGoogle Scholar
  51. Nobre, T. and Aanen, D. K. 2012. Fungiculture or termite husbandry? The Ruminant Hypothesis. Insects 3:307–323.CrossRefGoogle Scholar
  52. Pasanen, A.-L., Yli-Pietilä, K., Pasanen, P., Kalliokoski, P., and Tarhanen, J. 1999. Ergosterol content in various fungal species and biocontaminated building materials. Appl. Environ. Microbiol. 65:138–142.PubMedGoogle Scholar
  53. R Development Core Team 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  54. Rahier, A., and Benveniste, P. 1989. Mass spectral identification of phytosterols. Analysis of Sterols and Other Biologically Significant Steroids. Academic Press, New York. 223–250 pp.Google Scholar
  55. Schiff, N. and Feldlaufer, M. 1996. Neutral sterols of sawflies (symphyta): Their relationship to other hymenoptera. Lipids 31:441–443.PubMedCrossRefGoogle Scholar
  56. Schultz, T. R. and Brady, S. G. 2008. Major evolutionary transitions in ant agriculture. Proc. Natl. Acad. Sci. U. S. A. 105:5435–5440.PubMedCrossRefGoogle Scholar
  57. Scully, E. D., Hoover, K., Carlson, J., Tien, M., and Geib, S. M. 2012. Proteomic analysis of Fusarium solani isolated from the Asian longhorned beetle, Anoplophora glabripennis. PLoS One 7:e32990.PubMedCrossRefGoogle Scholar
  58. Singer, M. S. 2001. Determinants of polyphagy by a woolly bear caterpillar: A test of the physiological efficiency hypothesis. Oikos 93:194–204.CrossRefGoogle Scholar
  59. Srinivasan, C., Dsouza, T. M., Boominathan, K., and Reddy, C. A. 1995. Demonstration of laccase in the white rot basidiomycete Phanerochaete chrysosporium BKM-F1767. Appl. Environ. Microbiol. 61:4274–4277.PubMedGoogle Scholar
  60. Suen, G., Teiling, C., Li, L., Holt, C., Abouheif, E., Bornberg-Bauer, E., Bouffard, P., Caldera, E. J., Cash, E., Cavanaugh, A., Denas, O., Elhaik, E., Favé, M.-J., Gadau, J., Gibson, J. D., Graur, D., Grubbs, K. J., Hagen, D. E., Harkins, T. T., Helmkampf, M., Hu, H., Johnson, B. R., Kim, J., Marsh, S. E., Moeller, J. A., Muñoz-Torres, M. C., Murphy, M. C., Naughton, M. C., Nigam, S., Overson, R., Rajakumar, R., Reese, J. T., Scott, J. J., Smith, C. R., Tao, S., Tsutsui, N. D., Viljakainen, L., Wissler, L., Yandell, M. D., Zimmer, F., Taylor, J., Slater, S. C., Clifton, S. W., Warren, W. C., Elsik, C. G., Smith, C. D., Weinstock, G. M., Gerardo, N. M., and Currie, C. R. 2011. The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into Its obligate symbiotic lifestyle. PLoS Genet. 7:e1002007.PubMedCrossRefGoogle Scholar
  61. Swift, M. J., Heal, O. W., and Anderson, J. M. 1979. Decomposition in terrestrial ecosystems. University of California Press, Berkeley, California. 388 p.Google Scholar
  62. Talbot, P. H. B. 1977. The Sirex-Amylostereum-Pinus association. Annu. Rev. Phytopathol. 15:41–54.CrossRefGoogle Scholar
  63. Thomsen, I. M. and Harding, S. 2011. Fungal symbionts of siricid woodwasps: Isolation techniques and identification. For. Pathol. 41:325–333.CrossRefGoogle Scholar
  64. Weiss, M. R. 2006. Defacation behavior and ecology of insects. Annu. Rev. Entomol. 51:635–661.PubMedCrossRefGoogle Scholar
  65. Wheeler, Q. and Blackwell, M. 1984. Fungus-insect relationships: Perspectives in ecology and evolution. Columbia University Press, New York. 540 p.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Brian M. Thompson
    • 1
  • Robert J. Grebenok
    • 2
  • Spencer T. Behmer
    • 3
  • Daniel S. Gruner
    • 1
  1. 1.Department of EntomologyUniversity of MarylandCollege ParkUSA
  2. 2.Department of BiologyCanisius CollegeBuffaloUSA
  3. 3.Department of EntomologyTexas A&M UniversityCollege StationUSA

Personalised recommendations