Journal of Chemical Ecology

, Volume 38, Issue 12, pp 1493–1503 | Cite as

First Sex Pheromone of the Order Strepsiptera: (3R,5R,9R)-3,5,9-Trimethyldodecanal in Stylops melittae Kirby, 1802

Article

Abstract

The twisted-wing parasites (Strepsiptera) are an unusual and small order of insects with about 600 known species. As obligate endoparasitoids, they develop and spend most of their lives living in other insects. Adults show an extreme sexual dimorphism: The free-living males have large eyes, branched antennae, reduced forewings, and well developed hind wings, while the neotenic females of most species lack all external characters that normally define an insect, remain endoparasitic, and only extrude the cephalothorax from the host. Due to the males’ short life span of only a few hours, there must be an efficient means of mate finding. This is believed to be mediated by chemical cues released by virgin females. Here, we report the first identification and synthesis of a female-produced strepsipteran sex pheromone, (3R,5R,9R)-3,5,9-trimethyldodecanal, from Stylops melittae, a species parasitizing andrenid bees. We found this highly EAD-active compound to be present in cephalothoraxes of and released from unmated females, and synthetic samples proved to be extremely attractive when offered in the field during the swarming period of the males. The structural features of this new natural compound may further support the re-establishment of the Strepsiptera as the closest living relatives of the Coleoptera.

Keywords

Strepsiptera Stylopidae Stylops Andrena Twisted-wing parasite 3,5,9-Trimethyldodecanal GC-EAD GC-MS Endoparasitoid Taxonomy 

References

  1. Ando, T., Inomata, S. I., and Yamamoto, M. 2004. Lepidopteran sex pheromones, pp. 51–96, in S. Schulz (ed.), The Chemistry of Pheromones and Other Semiochemicals I: Topics in Current Chemistry 239. Springer, Berlin, Heidelberg, New York.Google Scholar
  2. Brandenburg, J. 1953. Der Parasitismus der Gattung Stylops an der Sandbiene Andrena vaga Pz. Z. f. Parasitenkunde 15:457–475.Google Scholar
  3. Crowson, R. A. 1960. The phylogeny of Coleoptera. Annu. Rev. Entomol. 5:111–134.CrossRefGoogle Scholar
  4. Crowson, R. A. 1967. The Natural Classification of the Families of Coleoptera, 2nd ed. Classey, Hampton, England.Google Scholar
  5. Dallai, R., Lupetti, P., Giusti, F., Mercati, D., Paccagnini, E., Turillazzi, S., Beani, L., and Kathirithamby, J. 2004. Fine structure of the Nassonow's gland in the neotenic endoparasitic female Xenos vesparum (Rossi) (Strepsiptera, Insecta). Tissue & Cell 36:211–220.CrossRefGoogle Scholar
  6. Dötterl, S., Wolfe, L. M., and Jürgens, A. 2005a. Qualitative and quantitative analyses of flower scent in Silene latifolia. Phytochemistry 66:203–213.PubMedCrossRefGoogle Scholar
  7. Dötterl, S., Füssel, U., Jürgens, A., and Aas, G. 2005b. 1,4-Dimethoxybenzene, a floral scent compound in willows that attracts an oligolectic bee. J. Chem. Ecol. 31:2993–2998.PubMedCrossRefGoogle Scholar
  8. Francke, W. and Dettner, K. 2005. Chemical signalling in beetles, pp. 85–166, in S. Schulz (ed.), The Chemistry of Pheromones and Other Semiochemicals II: Topics in Current Chemistry 240. Springer, Berlin, Heidelberg, New York.Google Scholar
  9. Gusenleitner, F. and Schwarz, M. 2002. Weltweite Checkliste der Bienengattung Andrena mit Bemerkungen und Ergänzungen zu paläarktischen Arten (Hymenoptera, Apidae, Andreninae, Andrena). Entomofauna Suppl. 12.Google Scholar
  10. Hayward, A., McMahon, D. P., and Kathirithamby, J. 2011. Cryptic diversity and female host specificity in a parasitoid where the sexes utilize hosts from separate orders. Mol. Ecol. 20:1508–1528.PubMedCrossRefGoogle Scholar
  11. Hofeneder, K. 1910. Comment p. 14, in N. V. Nassonov, Untersuchungen zur Naturgeschichte der Strepsipteren. Aus dem Russischen übersetzt von A.v. Sipiagin, Mit Anmerkungen und herausgegeben von K. Hofeneder. Ber. Naturwiss. med. Ver. Innsbruck 33:1–206.Google Scholar
  12. Johnston, J. S., Ross, L. D., Beani, L., Hughes, D. P., and Kathirithamby, J. 2004. Tiny genomes and endoreduplication in Strepsiptera. Insect Mol. Biol. 13:581–585.PubMedCrossRefGoogle Scholar
  13. Karlson, P. and Lüscher, M. 1959. “Pheromones”: a new term for a class of biologically active substances. Nature 183:55–56.PubMedCrossRefGoogle Scholar
  14. Kathirithamby, J. 2009. Host-parasitoid associations in Strepsiptera. Annu. Rev. Entomol. 54:227–249.PubMedCrossRefGoogle Scholar
  15. Keyling-Bilger, F., Schmitt, G., Beck, A., and Luu, B. 1996. Synthesis of optically active diastereomers of a nonproteic neurotrophic mimetic. Tetrahedron 52:14891–14904.CrossRefGoogle Scholar
  16. Kifune, T. and Maeta, Y. 1990. Ten new species of the genus Stylops (Strepsiptera, Stylopidae) parasitic on the genus Andrena (Hymenoptera, Andrenidae) of Japan. Esakia Special Issue 1:97–110.Google Scholar
  17. Kinzelbach, R. K. 1969. 78. Familie: Stylopidae, Fächerflügler (= Ordnung: Strepsiptera), pp. 139–159, in H. Freude, K. W. Harde, and G. A. Lohse (eds.), Die Käfer Mitteleuropas 8. Spektrum Akademischer Verlag, Krefeld.Google Scholar
  18. Kinzelbach, R. K. 1978. Insecta. Fächerflügler (Strepsiptera). Die Tierwelt Deutschlands 65. Gustav Fischer Verlag, Jena.Google Scholar
  19. Kirby, W. 1802. Monographia Apium Angliae, Volume 2. Ipswich, London.Google Scholar
  20. Kristensen, N. P. 1981. Phylogeny of insect orders. Annu. Rev. Entomol. 26:135–157.CrossRefGoogle Scholar
  21. Lauterbach, G. 1954. Begattung und Larvengeburt bei den Strepsipteren. Zugleich ein Beitrag zur Anatomie der Stylops-Weibchen. Z. f. Parasitenkunde 16:255–297.Google Scholar
  22. Matsumoto, Y., Matsumura, M., Hoshizaki, S., Sato, Y., and Noda, H. 2011. The strepsipteran parasite Elenchus japonicus (Strepsiptera, Elenchidae) of planthoppers consists of three genotypes. Appl. Entomol. Zool. 46:435–442.CrossRefGoogle Scholar
  23. Nieberding, C. M., de Vos, H., Schneider, M. V., Lassance, J.-M., Estramil, N., Andersson, J., Bång, J., Hedenström, E., Löfstedt, C., and Brakefield, P. M. 2008. The male sex pheromone of the butterfly Bicyclus anynana: Towards an evolutionary analysis. Plos One 3:e2751. doi:10.1371/journal.pone.0002751.
  24. Niehuis, O., Gerrit, G., Grath, S., Pohl, H., Lehmann, J., Tafer, H., Donath, A., Krauss, V., Eisenhardt, C., Hertel, J., Petersen, M., Mayer, C., Meusemann, K., Peters, R. S., Stadler, P. F., Beutel, R. G., Bornberg-Bauer, E., McKenna, D. D., and Misof, B. 2012. Genomic and morphological evidence converge to resolve the enigma of Strepsiptera. Curr. Biol. 22:1309–1313.PubMedCrossRefGoogle Scholar
  25. Proffitt, F. 2005. Twisted parasites from "outer space" perplex biologists. Science 307:343–343.PubMedCrossRefGoogle Scholar
  26. Rodstein, J., Millar, J. G., Barbour, J. D., McElfresh, J. S., Wright, I. M., Barbour, K. S., Ray, A. M., and Hanks, L. M. 2011. Determination of the relative and absolute configurations of the female-produced sex pheromone of the cerambycid beetle Prionus californicus. J. Chem. Ecol. 37:114–124.PubMedCrossRefGoogle Scholar
  27. Ryhage, R. and Stenhagen, E. 1959. Mass spectrometric studies. I. Methyl esters of saturated normal carboxylic acids. Arkiv för Kemi 13:523–542.Google Scholar
  28. Ryhage, R. and Stenhagen, E. 1963. Mass spectrometry of long chain esters, pp. 399–452, in F. W. McLafferty (ed.), Mass Spectrometry of Organic Ions. Academic, New York.CrossRefGoogle Scholar
  29. Straka, J., Rezkova, K., Batelka, J., and Kratochvil, L. 2011. Early nest emergence of females parasitised by Strepsiptera in protandrous bees (Hymenoptera Andrenidae). Ethol. Ecol. Evol. 23:97–109.CrossRefGoogle Scholar
  30. Tolasch, T., von Fragstein, M., and Steidle, J. L. M. 2007. Sex pheromone of Elater ferrugineus L. (Coleoptera: Elateridae). J. Chem. Ecol. 33:2156–2166.PubMedCrossRefGoogle Scholar
  31. Tolasch, T., Kehl, S., and Dötterl, S. 2010. Sex pheromone of a twisted-wing parasite. Lecture on the 26th Annual Meeting of the ISCE, August 2nd 2010, Tours, France.Google Scholar
  32. Trautwein, M. D., Wiegmann, B. M., Beutel, R., Kjer, K. M., and Yeates, D. K. 2012. Advances in insect phylogeny at the dawn of the postgenomic era. Annu. Rev. Entomol. 57:449–468.PubMedCrossRefGoogle Scholar
  33. Westrich, P. 1989. Die Wildbienen Baden-Württembergs. Ulmer, Stuttgart.Google Scholar
  34. Whiting, M. F. and Wheeler, W. C. 1994. Insect homeotic transformation. Nature 368:696.CrossRefGoogle Scholar
  35. Whiting, M. F., Carpenter, J. C., Wheeler, Q. D., and Wheeler, W. C. 1997. The Strepsiptera problem: Phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Syst. Biol. 46:1–68.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Universität Hohenheim, Institut für ZoologieStuttgartGermany
  2. 2.Universität Bayreuth, Lehrstuhl Tierökologie IIBayreuthGermany
  3. 3.Universität Bayreuth, Lehrstuhl PflanzensystematikBayreuthGermany

Personalised recommendations