Journal of Chemical Ecology

, Volume 38, Issue 12, pp 1483–1491 | Cite as

Stylopsal: The First Identified Female-produced Sex Pheromone of Strepsiptera

  • Josef Cvačka
  • Pavel Jiroš
  • Blanka Kalinová
  • Jakub Straka
  • Kateřina Černá
  • Petr Šebesta
  • Aleš Tomčala
  • Soňa Vašíčková
  • Ullrich Jahn
  • Jan Šobotník
Article

Abstract

A female-produced sex pheromone of Stylops muelleri was identified as an unusually branched saturated aldehyde (9R)-3,5-syn-3,5,9-trimethyldodecanal. We named it stylopsal. Its structure was established by using mass spectrometry, infrared spectroscopy, and organic synthesis of candidate compounds. The synthetic standard of (9R)-3,5-syn-3,5,9-trimethyldodecanal gave identical chromatographic and mass spectrometric data as the natural pheromone and also was active in electroantennographic and behavioral assays. The female fat body lipids contained the corresponding fatty acid, indicating a possible link between lipid metabolism and the pheromone biosynthesis.

Keywords

Strepsiptera Stylops Sex pheromone Aldehyde Trimethyldodecanal Fat body 

Supplementary material

ESM 1

(AVI 76508 kb)

10886_2012_214_MOESM2_ESM.pdf (500 kb)
ESM 2(PDF 499 kb)

References

  1. Bates, D. and Maechler, M. 2010. Lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-34. URL:http://CRAN.R-project.org/package=lme4
  2. Beutel, R. G., Friedrich, F., Hornschemeyer, T., Pohl, H., Hunefeld, F., Beckmann, F., Meier, R., Misof, B., and Whiting, M. F. 2011. Morphological and molecular evidence converge upon a robust phylogeny of the megadiverse Holometabola. Cladistics 27:341–355.CrossRefGoogle Scholar
  3. Brandenburg, J. 1953. Der Parasitismus der Gattung Stylops an der Sandbiene Andrena vaga Pz. Z. Parasitenkd. 15:457–475.PubMedCrossRefGoogle Scholar
  4. Cheng, C. and Gross, M. L. 2000. Applications and mechanisms of charge-remote fragmentation. Mass Spectrom. Rev. 19:398–420.PubMedCrossRefGoogle Scholar
  5. Chow, S., Fletcher, M. T., Lambert, L. K., Gallagher, O. P., Moore, C. J., Cribb, B. W., Allsopp, P. G., and Kitching, W. 2005. Novel cuticular hydrocarbons from the cane beetle Antitrogus parvulus - 4,6,8,10,16-penta- and 4,6,8,10,16,18-hexamethyldocosanes - Unprecedented anti-anti-anti-stereochemistry in the 4,6,8,10-Methyl Tetrad. J. Org. Chem. 70:1808–1827.PubMedCrossRefGoogle Scholar
  6. Cvačka, J., Kofroňová, E., Vašíčková, S., and Stránský, K. 2008. Unusual fatty acids in the fat body of the early nesting bumblebee, Bombus pratorum. Lipids 43:441–450.PubMedCrossRefGoogle Scholar
  7. Dallai, R., Lupetti, P., Giusti, F., Mercati, D., Paccagnini, E., and Turillazzi, S. 2004. Fine structure of the Nassonow’s gland in the neotenic endoparasitic of female Xenos vesparum (Rossi) (Strepsiptera, Insecta). Tissue Cell 36:211–220.PubMedCrossRefGoogle Scholar
  8. De Mico, A., Margarita, R., Parlanti, L., Vescovi, A., and Piancatelli, G. 1997. A versatile and highly selective hypervalent iodine (III)/2,2,6,6-tetramethyl-1-piperidinyloxyl-mediated oxidation of alcohols to carbonyl compounds. J. Org. Chem. 62:6974–6977.CrossRefGoogle Scholar
  9. Dewick, P. M. 2009. pp. 39–135, Medicinal natural products. A biosynthetic approach, Third ed.. Wiley, Chichester.Google Scholar
  10. Friedrich, F. and Beutel, R. G. 2010. Good bye Halteria? The evolution of the thorax in Holometabola. Cladistics 26:579–612.CrossRefGoogle Scholar
  11. Harvey, D. J. 1991. Pyridine-containing schiff base derivatives for the structural determination of long-chain aldehydes by gas chromatography combined with mass spectrometry. J. Am. Soc. Mass Spectrom. 2:245–249.CrossRefGoogle Scholar
  12. Hughes, D. P., Kathirithamby, J., Turillazzi, S., and Beani, L. 2004. Social wasps desert the colony and aggregate outside if parasitized: Parasite manipulation? Behav. Ecol. 15:1037–1043.CrossRefGoogle Scholar
  13. Ishiwata, K., Sasaki, G., Ogawa, J., Miyata, T., and Su, Z.-H. 2011. Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences. Mol. Phylogenet. Evol. 58:169–180.PubMedCrossRefGoogle Scholar
  14. Katritzky, A. R., Chen, K., Maran, U., and Carlson, D. A. 2000. QSPR correlation and predictions of GC retention indexes for methyl-branched hydrocarbons produced by insects. Anal. Chem. 72:101–109.PubMedCrossRefGoogle Scholar
  15. Kinzelbach, R. 1971. Morphologische Befunde an Fächerflüglern und ihre phylogenetische Bedeutung (Insecta: Strepsiptera). Zoologica 41 Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 256 p.Google Scholar
  16. Knierzinger, A., Walther, W., Weber, B., Mueller, R. K., and Netscher, T. 1990. A new method for the stereochemical analysis of acyclic terpenoid carbonyl compounds. Helv. Chim. Acta 73:1087–1107.CrossRefGoogle Scholar
  17. Linsley, E. G. and MacSwain, J. W. 1957. Observations on the habits of Stylops pacifica Bohart. Univ. Calif. Publ. Entomol. 11:395–430.Google Scholar
  18. Longhorn, S. J., Pohl, H. W., and Vogler, A. P. 2010. Ribosomal protein genes of holometabolan insects reject the Halteria, instead revealing a close affinity of Strepsiptera with Coleoptera. Mol. Phylogenet. Evol. 55:846–859.PubMedCrossRefGoogle Scholar
  19. Lopez, F., Harutyunyan, S. R., Meetsma, A., Minnaard, A. J., and Feringa, B. L. 2005. Copper-catalyzed enantioselective conjugate addition of grignard reagents to α,β-unsaturated esters. Angew. Chem. Int. Ed. 44:2752–2756.CrossRefGoogle Scholar
  20. McKenna, D. D. and Farrell, B. D. 2011. 9-Genes reinforce the phylogeny of Holometabola and yield alternate views on the phylogenetic placement of Strepsiptera. PLoS One 5:e11887.CrossRefGoogle Scholar
  21. R Development Core Team 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. URL http://www.R-project.org.
  22. Riek, E. F. 1970. Strepsiptera, pp. 622–635, in E. B. Britton et al. (eds.), The Insects of Australia. Melbourne University Press, Australia.Google Scholar
  23. Růžička, Z. 1987. Fine structure of some external organs in Xenos vesparum (Strepsiptera, Sytopidae). Acta Entomol. Bohemoslov. 84:438–440.Google Scholar
  24. Salt, G. 1927. The effects of stylopization on aculeate Hymenoptera. J. Exp. Zool. 48:223–331.CrossRefGoogle Scholar
  25. Steinebrunner, F., Schiestl, F. P., and Leuchtmann, A. 2008. Variation of insect attracting odor in endophytic Epichloë fungi: Phylogenetic constrains versus host influence. J. Chem. Ecol. 34:772–782.PubMedCrossRefGoogle Scholar
  26. Straka, J., Rezková, K., Batelka, J., and Kratochvíl, L. 2011. Early nest emergence of females parasitised by Strepsiptera in protandrous bees (Hymenoptera Andrenidae). Ethol. Ecol. Evol. 23:97–109.CrossRefGoogle Scholar
  27. Stránský, K. and Jursík, T. 1996. Simple quantitative transesterification of lipids. 1. Introduction. Fett/Lipid 98:65–71.CrossRefGoogle Scholar
  28. Tang, L. and Deng, L. 2002. Dynamic kinetic resolution via dual-function catalysis of modified cinchona alkaloids: Asymmetric synthesis of α-hydroxy carboxylic acids. J. Am. Chem. Soc. 124:2870–2871.PubMedCrossRefGoogle Scholar
  29. Wang, Y. and Metz, P. 2000. Resolution of methyl nonactate. Tetrahedron: Asymmetry 11:3995–3999.CrossRefGoogle Scholar
  30. Weitzel, G. and Wojahn, J. 1951. Biochemie verzweigter Carbonsäuren. V. Mitteilung. Darstellung sämtlicher d,l-Monomethyl-palmitinsäuren. Hoppe Seylers Z. Physiol. Chem. 287:65–88.PubMedCrossRefGoogle Scholar
  31. Whiting, M. F., Carpenter, J. C., Wheeler, W. C., and Wheeler, Q. D. 1997. The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18 s and 28 s ribosomal DNA sequences and morphology. Syst. Biol. 46:1–68.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Josef Cvačka
    • 1
  • Pavel Jiroš
    • 1
  • Blanka Kalinová
    • 1
  • Jakub Straka
    • 2
  • Kateřina Černá
    • 2
  • Petr Šebesta
    • 1
  • Aleš Tomčala
    • 1
  • Soňa Vašíčková
    • 1
  • Ullrich Jahn
    • 1
  • Jan Šobotník
    • 1
  1. 1.Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic
  2. 2.Department of Zoology, Faculty of ScienceCharles University in PraguePrague 2Czech Republic

Personalised recommendations